
AD-A115 558 AIR FORCE INST OF TECH WRISHTPATTRSON APO ON4 SCHOO--ETC F/0 9/2DESIGN AND IMPLEMENTATION OF A SACKENO MULTIPLE-PiOCESSOR RELAT--ETC[U)

mhmmhhhhhhhMEl
somhhhmhhMEl

01~

DEPARTMENT OF THE AIR FORCE
AM UNIVSWY (ATC)

-AIR FORCE INSTITUTE OF TECHNOLOGY

-Wright-Patterson Air Force gas*, Ohio

'Awe !iA pw,-t 06 14 160

AFIT/GCS/EE/81 D-6

DESIGN AND IMPLEMENTATION
OF A

BACKEND MULTIPLE-PROCESSOR
RELATIONAL DATA BASE COMPUTER SYSTEM

THESIS

AFIT/GCS/EE/81D-6 Robert W. Fonden

Captain USAF

Approved for public release; distribuuion unlimited.

APPY~~ ~ ~relense;

AFIT/GCS/EE/81D-6

DESIGN AND IMPLEMENTATION

OF A

BACKEND MULTIPLE-PROCESSOR

RELATIONAL DATA BASE COMPUTER SYSTEM

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

by

Robert W. Fonden, B.A.

Captain USAF

Graduate Computer Science

December 1981

Approved for public release; distribution unlimited.

Preface

This work presents a feasibility study, a requirements

analysis, an initial design, and a first stage

implementation of a backend multiple-processor relational

data base computer system for the Digital Engineering

Laboratory which I hope will provide a sound basis for

follow on implementation efforts to fully implement this

data base system.

I would like to express my deep appreciation to Dr.

Thomas C. Hartrum, who as my research advisor gave me

valuable guidance and encouragement. Also, I thank my

thesis readers, Dr. Gary B. Lamont, Major Charles W. Lillie

and Captain Richard L. Conn whose constructive comments

helped to improve the clarity of this thesis. In this

vein, thanks are also due to Dan Zambon, an AFIT/ENE

technician, for his many hours of help with the computer

systems I used.

Finally, I wish to thank my wife, Carol, for her help

and encouragement during these past 18 mornths.

Robert W. Fonden

D$,Atesi~uon/ TITIS ~~~

rUII !1-1C J d

AvallZ'CLI)tY C,1; -e

1"SPECr~to'

..... ii' i

Contents

P a

Preface.....................

List of Figures vii

Abstract....................

I. Introduction...................

Background...................
Statement of the Problem. 4
Scope 5
Approach.......................5
Overview of the Thesis................7

Ii. Background..................

Introduction 0

Backend Data Base Computer Systems. 10

Concepts ic
Advantages and Disadvantages 14

Performance 14
Additional Resources. 16
Specialization 16
Modularity 17
Security and Integrity. 17
Reliability..................18
Cost 19

Summary. 19

The Relational Data Model 20

Data Base Computer Architectures. 39

Categorization 39
Single Processor Indirect Search41
Single Processor Direct Search44

CAFS Architecture...............45

Multiple Processor Direct Search. 48

CASSM Architecture. 50

Multiple Processor Indirect Search. 54

RAP Architecture. 56

DIRECT Architecture 59

iii

Multiple Processor Combined Search. 61

DBC Architecture. 61

Comparisons...................64

Summary. 67

III. System Development 68

Introduction 68
Longterm Requirements and Goals 68
System Design. 73

General Description 73
System Functions 80
System Hardware Architecture. 83
System Support Software 85

System Development Plan 86

General Description 86
Development Stages 87
Resource Requirements 89

Summary. 91

IV. Subsystem Design 93

Introduction 93
Query Operation Formats 93
Subsystem Data Tables 94

Domain Name Table................95
Attribute Name Table. 95
Relation Table...................95
Relation Attribute Table.............96
Relation Page Table 96
Query Processor Table 97
Intermediate Memory Module Table. 97
Query Packet Wait Queue 98
Query Packet Operation List 98
Query Packet Execution List 98
Query Operation State Table 99
Transmit Queue 99

Subsystem Functions 100

Initialization..................100
Setup.....................102

4CheckQueues...................103
Service Host Request 104
Assign a Query Processor 105

iv

Service a Query Processor...........106
Answer a Host Request.............107
Backup the Data Base 108
Wrapup....................108

Subsystem Logic Flow 108
Interprocessor Communication 117

Host / BCP Communication 118
BCP / QP Communication 118

Summary.....................119

V. Subsystem Implementation and Testing 121

Introduction....................121
Implementation and Test Approach 122
Resources and Constraints............125
Test Support Software. 127

Host Processor Software............128
Query Processor Software 128
1MM Processor Software 129

Test Results and Evaluation. 129

VI. Conclusions and Recommendations. 1.31

Overview.....................131
Recommendations..................132
Final Comment...................134

Bibliography.......................136

Additional Readings.............138

Appendix A: BCP Structure Chart Documentation. 142

Appendix B: Relational Algebra Query Operation Formats .184

Appendix C: BCP System Table Formats 196

Appendix D: BCP System Data Base File Formats. 204

Appendix E: Inter-processor Architectural Specs 210

Appendix F: Channel Link Software Specifications 212

Appendix G: HOST Structure Chart Documentation. 222

Appendix H: QP Structure Chart Documentation 231

Volume II: Program Documentation (Available from AFIT/EN)

V

Vita 239

vi

List of Figures

Figure Page

1 Backend Data Base Computer System 11

2 Software Organization of Backend DBC System . . 13

3 The Relation COURSE 21

4 Levels of Normalization 24

5 A "Selection" on the Relation COURSE 27

6 A "Projection" on the Relation COURSE 28

7 The Relation QNS 30

8 A "Join" of the Relations QNS and COURSE . . 31

9 The Medical Database 35

10 The Relational Algebra Hierarchy for a Query 36

11 The MADMAN System Architecture 43

12 The CAFS Incorporated Retrieval System . . . 46

13 The CAFS Architecture 47

14 The MPDS ARchitecture 49

15 The CASSM System Architecture 52

16 The CASSM Query Processor Architecture 53

17 The MPIS Architecture 55

18 The RAP System Architecture 57

19 The RAP Query Processor Architecture 58

20 The DIRECT System Architecture 60

21 The DBC System Architecture 63

22 The Conceptual Design Approach 74

23 The Physical Design Approach 75

24 The BCP Subsystem Functions 101

vii

Figure Page

25 The BCP Test Hardware Configuration 126

26 The Inter-processor Architectural Specs 211

viii

Abstract

-A backend multiple-processor relational data base

computer system was designed with the goal of implementing

a data base management system using state-of-the-art

technology. The objective was to overcome the traditional

limitations of data base management systems implemented on

conventional type computer architectures. Hopefully this

would solve the ever-growing problem of information systems

becoming obsolete in supporting the growing information

needs of the corporate industry.--

Toward this goal, investiga tio were made into

studies in the literature involving backend data base

computer systems, the relational data model, and data base

computers using specialized architectures. The advantages

and disadvantages of these three areas were explored and

then, after having defined the longte~m requirements and

goals for che development of such a system, the beneficial

characteristics from each of these areas were merged

together to produce a system design. Central to this

design is the use of a set of processors, managed by a

backend controller processor, to take full advantage of

three levels of parallelism in processing relational algebra

query requests against relations.

Due to the complexity and size of this development

effort, a top-down structured detail.ed design and only a

partial implementation of the backend controller processor

was achieved in this research effort. A detailed

ix

development plan has been defined, consisting of several

projected follow-on development efforts, to complete the

entire development of this data base computer system.

x

I.INTRODUCTION

Background

In recent years, a substantial increase in the amount

of information processing involving the use of database

management systems (DBMS) has occurred. There has been a

growing need for the availability of very large amounts of

information as well as an equally growing need to acquire

and access such information at a much faster rate. In many

situations, due to this increase in demand, installations

have reached the point of resource saturation and system

degradation. Those installations supporting such DBMSs are

developing into very serious bottlenecks in the overall

function of the organizations they were built to serve.

The faltering performance of these installations must be

remedied, and remedied to a level of sufficiency so as to

remain a suitable service for many years to come. The

approach to rectifying this problem consists of two main

endeavors. The first deals with the improvement of computer

software and the second deals with the improvement of

computer hardware.

In the area of computer software, effort is being

spent on the improvement of DBMS designs. Research in the

area of algorithm and file structure improvements are being

conducted to increase the level of efficiency, and

therefore, to speed up processing. Related to this research

are studies being done to optimize the performance of

information query processing. Of the three major DBMS

design approaches (hierarchical, network, and relational),

the relational approach has lately received an extra amount

of attention. Many advantages exist in the relational

approach as compared to both the hierarchical and network

approaches, making the relational approach a very promising

DBMS for the future. Some of the most relevant advantages

are listed below:

(1) it provides a simpler, more unified user data

model, resulting in systems that are easier to use and

maintain;

(2) it is much more data-independent and consequently

results in systems that are generalized, having databases

that are easier to alter, e.g., when new data relationships

are discovered;

(3) it is much easier to express data semantic

integrity constraints;

(4) data retrieval and modification requests are

easier to express;

(5) since information is represented in one and only

one way in a relational database, only one operator is

needed for each of the basic functions to perform;

(6) the emphasis is on the use of sets, rather than on

the handling of one record at a time;

(7) sharing and protection requirements are more

easily satisfied, due primarily to the simplicity of the

underlying data base model and absence of highly

2

distributed access paths; and

(8) implementation issues are isolated from the

logical database model - this results in increased

intersystem compatibility and, most significantly,

encourages a structured approach to implementation.

In the area of computer hardware, until recently, the

obvious solution to the problem of system saturation was to

upgrade the mainframe. This is now becoming an

increasingly unappealing and/or insufficient solution to

the problem. Upgrading to a new machine is not only very

expensive, dollar wise; it may also require an extensive

manpower expenditure to have programs and data transferred

and possibly modified. One alternative to such an upgrade

is the offloading of the data base management functions

from the existing mainframe computer to an attached mini-

computer. Such a configuration is known as a

frontend/backend DBM computer system. Such an alternative

can be up to an order of magnitude cheaper, in terms of

hardware costs, than replacing the mainframe with a larger

machine. Added to that is the fact that only the DBMS

software need be moved over. In its most elementary form,

a frontend/backend DBM computer system consists of a

locally connected pair of computers. The application

programs are executed by the frontend (Host computer),

while the backend (DBMS) computer controls access to the

database. The addition of the backend computer, if using an

operating system supporting multiprogramming, can go as far

3

as permitting the application program execution, the DBMS

execution, and the secondary storage access, all to occur

simultaneously. More complex frontend/backend DBMS forms

consist of having multiple backend processors in a

configuration tied to a host or even multiple host

computers. Also, a number of multiple-processor backend

DBMS configurations are being considered, such as having a

set of processors distributed by data, distributed by

function, or pipelined.

To date, relational DBMSs in general have been

criticized because of their inefficiency and comparative

slowness when actually implemented. But the positive

attributes characteristic in a relational DBMS clearly show

that this is still the best approach to take. Therefore,

it is clearly a must to continue to improve on these few

unfavorable qualities.

By seeking the best of two worlds, the use of backend

multiple-processor computer architectures and relational

DBMS concepts, a longterm solution to this information

processing problem can definitely be reached.

rtatement of the Problem

The purpose of this thesis is to solve four problems.

First is to determine the feasibility of applying multiple-

processor techniques to the implementation of a relational

DBMS within a mini/micro-computer system environment.

Secon.d is to determine the system requirements, to include

4I

both long-term requirements and goals as well as short-term

goals (thesis timeframe). Third is to develop a

structured, modular system design (software and hardware

using current state-of-the-art technology) for implementing

the required system over the longterm, identifying

experimental tradeoffs. Fourth is to implement a first

stage system model to show feasibility and to investigate

tradeoff alternatives.

Scope

The original scope of this thesis was to fully

accomplish the four problems/goals defined within this

thesis. After the design phase was completed, it became

apparent that the implementation and testing phase would

exceed the available time. Therefore, it was decided to

pursue the implementation and testing of the software in a

top-down manner, completing entire functions at a time, for

as far as time would permit. However, due to the top-down

modular design of the subsystem, and the fact that all of

the software is already in clean compile form,

implementation and testing of the remaining untested

software should be an easy task to accomplish.

Approach

The first step consisted of an extensive literature

search to determine what research and development had

already been done in the area of frontend/backend DBMS

configuration approaches as well as in the area of

5

relational DBMS parallel processing approaches. An effort

was made to collect information from all areas pertaining

to backend and relational database systems: backend

computer architectures, data base machines, state-of-the-

art memory technology, relational DBMSs, storage

structures, query processing, and interprocessor coupling

(communication). Existing backend data base machine

architectures were studied in particular.

Once a sufficient background had been gained, a

feasibility study of the application of current

frontend/backend system configuration concepts to a

mini/micro-computer and relational DBMS environment was

subsequently made.

Upon completion of the feasibility study, a

requirements analysis was then accomplished. Longterm

requirements and goals were identified in preparation for

the development of a backend relational DBM computer

system. These longterm requirements and goals were

specified in detail to ensure that the system would be

developed using the latest state-of-the-art hardware and

software capabilities.

An approach to achieving these longterm requirements

and goals was then developed. First, an initial general

design of the backend system was accomplished. An

investigation of design alternatives for each of the sub-

systems of the general design was then performed. Choices

were then made in specifically how each subsection's design

6

would be developed. Then the system functions and

interrelationships, the hardware architecture, the support

software, the overall system logic flow, and the

experimental tradeoffs were defined. Upon completion of

the systems design, a system development plan was

developed. Specific development stages were identified,

specifying exactly what capabilities would be developed at

each stage. Stages which could be accomplished in parallel

were then identified. Finally, the resources required for

each stage of development were specified so as to enable

the future scheduling of the procurement and/or development

of such required resources.

Once the longterm system was identified and its

development approach specified, the backend controller

processing subsystem was selected and pursued in greater

detail - its analysis, detailed design, and implementation.

A top-down modular design was used to allow for a

straightforward implementation of this thesis effort as

well as to provide for future ease in testing alternative

subsection designs.

Overview of the Thesis

The structure of this thesis basically follows the

approach that was taken in the investigation. Chapter II

presents a background review of the concepts for the

following: (1) Backend data base computer systems, (2) The

relational data model and, (3) Data base computer

architectures. In Chapter III, the system requirements are

7

first identified, then the general design is presented, and

finially the development plan is presented. Chapter IV

describes the detailed design of the master-control sub-

system of the backend computer system. Chapter V describes

the entire effort of the subsystem's implementation and

testing. Finally, Chapter VI summarizes this investigation

and gives recommendations for the follow-on thesis research

efforts.

8

_1I. BACKGROUND

Introduction

To ensure that the reader will understand the

reasoning process behind the numerous decisions made in the

architectural design of the backend multiple-processor

relational data base computer system developed in this

thesis effort, a background chapter has been included in

this thesis. Three major sections are presented in this

background chapter. Due to the importance of the many

factors which all contribute to the overall design

justification of a backend multiple-processor relational

data base computer system, a degree of detail will be given

in each of these sections.

In the first section, backend data base computer

systems are discussed. The general concepts and the

advantages and disadvantages of using a backend database

computer system are presented to show the initial

potential of using such a system in the field of

information management.

In the second section, the relational data model is

discussed. A detailed description is first given and then

the advantages in using the relational data model for

implementating a DBMS within a backend computer system are

given. It is important that the reader firmly grasp the

information in this section before proceeding on to the

9

next section of this background chapter or, for that

matter, all remaining chapters in this thesis.

The third and last section of this background chapter

presents the details of database computer architectures

built especially for the implementation of relational

DBMSs using specialized state-of-the-art technology.

Specific implementations are presented identifying their

design specifications and their advantages and

disadvantages of such architectures. Again, the level of

detail is felt to be a necessity in order to properly

orient the reader for the following chapters presenting the

design approach chosen for this thesis effort.

Backend Data Base Computer Systems

Concepts. The basic concept of the backend data base

computer (DBC) system is to remove all or part of the DBMS

from the host and put it on a backend computer system

(Maryanski, 1980: 3). In principle, this backend DBC may

be either a general- purpose computer, for example, a

mini/micro-computer, or a special-purpose computer designed

specifically for data base management. A backend DBC

system, in its most elementary form, is shown in Figure 1.

The application programs are executed by the host computer,

while the backend machine controls access to the database.

In this thesis, the term "backend DBC system" is used

instead of the term "backend data base processor" because

more than just a single processor may be involved. Modified

mass storage devices and controllers, parallel processors,

10

Host
(Armlic-ation
Function)

Int-r
Processor

Ba ckend
(Database

Function)

Data

1lur Bacl'end Data Ras- Connuter System
(?Marycinski, 1OPOt))

and memory devices may all be included in what is actually

a computer system for data management.

In this frontend/backend DBC system, there is

relatively tight coupling between the host and backend.

This is essentially a master-slave configuration in which

the backend database system fullfills the data requests

passed to it from the host. The backend system can reject

requests, however, which do not conform to the DBMS access

controls. The connection between the host and the backend

is usually through an I/O channel. This link should be of

at least channel speed if interprocessor communication is

not to become a bottleneck. Simulation studies have shown

that intermachine links with speeds of I Mbaud or greater

will produce only minimal communication delays (Canaday,

1974; Maryanski 1976). Configurations with the host and

backend computers sharing common memory are recommended

for situations in which quick response is absolutely

necessary.

In order to form a backend DBC system, communication and

interface software modules must be added to each computer.

Figure 2 illustrates the software organization of a basic

backend DBC system. The communication software must

provide the facilities for the transmission of commands,

data, and status information between the host and the

backend machines. The interface routines are the

processes that exchange the information via the

communication system.

12

____ ___ ___ ____ ___ ___ ____ ___ ___ ___Host

TApnlicat-lon Pr-ogramn K okAe

[A~oruCq 'lOn Progrrarl 1
Workc Area ratx

____ ____ ___ ____ ____ __ vster'

Host Interface (H-int)

Corwmniction Svst:m

Comriianication System'

3acrevd nterf-'ce (B1rmt)

DB1~SOper~tj -Sz

'3uh- ub- Base- Base
U0)Ub Tas k Task

Sc a 9c 11 ma Sc1' L 1
1 K

Buffers

Data
Ba q o

13

(i

Figure 2 shows a number of database tasks (query

requests) residing in the backend machine. If a backend is

to operate efficiently, the DBMS residing within the

backend should function in at least a multiprogrammed

environment, if only a single processor exists in the

backend computer (Canaday, 1974; Maryanski, 1976).

The major architectural distinction between backend

DBC systems is whether the implementation is on a general-

purpose single processor computer or a special-purpose

multiple processor computer.

One common assumption is that the DBMS functions are

I/O bound and therefore could be performed on a less

powerful processor, such as a mini-computer, more

efficiently that by a large general-purpose host.

Advantages and Disadvantages. Backend DBC systems

have received considerable attention due to their

potential for improving the performance of installations

with heavy database requirements. The research into these

systems has identified several important areas in which

the utilization of backend machines may provide

considerable advantages. However, there are also potential

drawbacks and problems that can arise if the backend

concept is not properly realized.

Performance. The prime benefit of a backend DBC

system is performance. This is obtained through

concurrent processing, associative addressing, dedicated

hardware, faster components, and other techniques applied

to the data base management task.

By just moving the DBMS over to a backend computer,

concurrent operation of the host (application software

execution) with the backend computer (DBMS software

execution) and the secondary storage devices (secondary

storage access) is achieved. Further concurrent

processing can then be achieved if the backend computer is

composed of a multiple number of processors.

By using associative (content-addressable) storage,

data can be addressed/searched in parallel, thereby further

improving the performance of the system.

Performance is also improved by reducing the volume of

data that must be moved between the host and the data

storage devices. This can be accomplished by using the

relational operations 'selection' and *projection'; and

data compression or encoding. Using selection, the backend

computer sends only those records actually needed by the

application program. In a typical case in today's standard

DBMSs, a thousand records may be read to find the few that

answer the user's query. Projection can then be used to

reduce the data volume for those cases where only a few

fields in the record are needed. In this case, the backend

computer selects only the desired records and the extracts

(projects) and converts only the required fields.

By removing the DBMS from the host, the overhead of

interrupt handling of I/O generated by the DBMS is also

removed from the host, further improving the system's

15

performance.

It must be emphasized that in order to achieve a real

performance improvement, a highspeed link between the host

and backend must be used, and a substantial demand for

database access must exist. If the gains due to

concurrency do not outweigh the losses caused by

communication overhead (interface and communication

software, and the transmission time of the interprocessor

link), then the move to a backend DBC system would be a

fruitless effort.

Additional Resources. By off-loading part of

the processing from the host to the backend computer,

additional processing time and memory on the host is

released and can be used by the application programs. This

benefit alone can be critical if the host is approaching

saturation. If the interface and communication software do

not require all of the released space, then additional

application programs can reside on the host machine,

resulting in an increase in concurrency and throughput.

Specialization. Specialization also provides

certain benefits in the hardware area. If special-purpose

hardware is used for the backend computer, certain features

and their corresponding costs are eliminated. For example,

a backend computer does not need such features as fast

multiply and divide logic, floating-point hardware, and the

long-word-size registers necessary to obtain high precision

in complex arithmetic calculations. It does, however, need

16

a powerful set of byte manipulation instructions and a high-

speed I/O capability to a wide variety of storage devices.

Modularity. The principle of modular design is

generally applied in the creation of both hardware and

software in order to produce well defined, reliable, and

correct devices and programs. A backend DBC system is an

example of modular design at the computer system level.

This seperation of functions provides for allowing

multiple hosts to interface with a single data base or

distributed database network. Once the data base and the

corresponding DBMS are on the backend computer, the data

base can then be made available to other types of host

computers by providing an interface so that the new host

can communicate with and receive data from the backend

computer. This is a much simpler task than modifying the

entire DBMS or developing methods to allow two independent

DBMSs to concurrently access the same data base.

Security and Integrity. Another backend DBC

system benefit is the improvement of the security and

integrity of the data base. Because both are related to

access control, security and integrity are considered

together. A backend DBC system provides a single access

path to the data base. If the data base devices are

connected only to the backend computer, then any operation

on the data base must go through the backend computer.

Since the backend computer is a system resource and

therefore is not programmable by the applications

17

programmers, it is now impossible for an application

program to circumvent the DBMS and access the data files

directly. This effectively isolates the application and

the host from the data base and thus increases its security

and integrity. In order to gain unauthorized access to data

in a backend DBMS, the intruder must appear to the DBMS as

a valid user. Thus the backend DBMS causes the intruder to

concentrate penetration efforts on defeating the password

mechanism or monitoring the behavior of the 'ommunication

interface, a much more difficult and lengthy effort.

Reliability. Improved backup and recovery is

another possible benefit of a backend DBC system. With a

separate host and backend computer, the two machines can

provide a check on each other. In fact, Canaday proposes

two separate logs for recovery (Canaday, 1974). In one,

the host records all transactions or requests sent to the

backend computer. Thus if the backend computer fails, the

data base can be restored using this log. Similarly, the

backend computer would keep a record of all changes to the

database. If the host fails, then the recovery can be

performed using the backend computer's log. In each case,

the recovery is done with an audit trail from the machine

that did not fail in order to minimize the chance that the

audit trail was contaminated. Moreover, by having one

processor check on the other, failures can be detected

sooner. Thus there will be less chance of the resulting

errors being propogated to other parts of the data base.

18

Cost. As mentioned earlier, a primary motivation

for the backend DBMS work is the development of an economic

alternative to the upgrading of a large mainframe. The

attachment of a dedicated conventional mini-computer to an

existing mainframe is an order of magnitude cheaper, in

terms of hardware costs, than replacing the mainframe with

a larger machine. But other factors must be considered in

the evaluation of the economic alternatives. The media

used for the storage of the database on the existing

mainframe and the backend machine must be compatible in

order to avoid a substantial conversion cost. Backend DBMS

communication and interface software must also be included

in the pricing. When all factors are considered, the great

difference in price between that of a mainframe to replace

the entire existing system and of a minicomputer to assume

the database function is the factor that makes a backend

DBMS a viable economic alternative to a mainframe upgrade.

Summary. In summary, the cost/performance benefits of

a backend DBC system and the increased functional

capabilities that it may offer are its prime advantages.

The backend computer can be used to extend the useful life

of an existing general-purpose host and to reduce the

costs and complexity of the conversion when the host is

replaced. Finally, a backend computer makes it easier and

cheaper to integrate a heterogeneous network into an

existing data base system. Potential trouble spots include

multivendor coordination in dealing with ambiguous

19

failures of hardware and software, and the proper sizing

of the backend computer to ensure that the host-backend

system remains balanced in handling a system load having

projected growth.

The Relational Data Model

A relation has a precise mathematical definition.

Definition 2.1: Given sets Si, S2, ... , Sn (not

necessarily distinct), R is a relation if it is a subset of

the Cartesian product S1 x S2 x ... x Sn. That is, R is a

set of ordered tuples sl, s2, ... , sn such that sl belongs

to SI, s2 belongs to S2, ... , and sn belongs to Sn. The

sets SI, S2, ..., Sn are called domains of R; the value of

n is called the degree of R (Date, 1977: 73).

A relation, as shown in Figure 3, is a two dimensional

table with the following properties: (1) no two rows are

identical (2) the ordering of the rows is insignificant,

(3) the ordering of the columns is insignificant, and, (4)

all table entries are atomic (nondecomposable) data items.

Each row of the relation is called a tuple. If a

relation has n columns (i.e., degree n), each row is

referred to as an n-tuple. For example, each tuple of

Figure 3 is referred to as a 6- tuple.

Each column is called an attribute; each attribute has

a domain. The domain is the set of values which can appear

in that column. For example, in Figure 3, the domain of

the attribute NUMBER is EE550, EE646, EE692, MA580, MA531,

20

.,~~~~~~ Lr Crcco ''0

cc

ccr

occ

V., 4.)

rc_ F-C)cr

S cr - cr
a: 0 I Cc

0 ap
0: 0c 4-' 0

a c -cr o r 1 4.. E

0 Ic T Z0 g7 cc C
H c P0 - t, r r E-

b c UI* c c

V, 4. OL c --. a ~ C,
V c Nc U' V, C- \-i El-

4- W~ w < w-O4 -a

c4 'e - r 21

EE799, and others.

A relation resembles a file, a tuple a record

(occurance, not type), and an attribute a field (type, not

occurance). A relational system contains several different

relations just as a CODASYL system contains several

different files. Relations may also be used to indicate a

relationship between different types of entities in

addition to describing a particular entity type. For

example, a data base may contain a COURSE relation and a

QUARTER relation as well as a explicit COURSE-QUARTER

relation linking the two types of entities. Different

relations are linked together or related through common

attributes.

An attribute (or combination of two or more

attributes) whose domain contains values which uniquely

identify the n- tuples of the relation is called the

primary key. For example, in Figure 3, the primary key is

NUMBER. A primary key is said to be nonredundant if it is

either a simple domain (not a combination) or a combination

such that none of its constituents is superfluous in

uniquely identifying the tuple. For example, in Figure 3,

(NUMBER,TITLE) would not be a nonredundant primary key for

COURSE. A relation can contain more than one nonredundant

primary key; in that case, one of these candidates is

arbitrarily selected and called the primary key of that

relation.

A normalized relation is one in which each attribute

22

contains only atomic (nondecomposable) values. Three

levels of normalization have been defined. All normalized

relations are in first normal form; some of the first

normal form relations are also in second normal form; and

some of the second normal form relations are also in third

normal form. See Figure 4.

In order to discuss the differences in these three

forms, the terms "functional dependence" and "full

functional dependence" must be defined.

Definition 2.2: Given a relation R, the attribute Y of

R is functionally dependent on attribute X of R if and only

if each X- value in R has associated with it precisely one

Y- value in R at any one time (Date, 1977: 154).

For example, in Figure 3, TITLE, CRHOURS, LHOURS,

LBHOURS and SIZELIMIT are functionally dependent on NUMBER;

that is, given a particularINUMBER value, there exists

precisely one corresponding value for each of TITLE,

CRHOURS, LHOURS, LBHOURS and SIZELIMIT. Note that

functional dependence can be applied when either X or Y or

both are composite domains.

Definition 2.3: Attribute Y is fully functionally

dependent on attribute X if it is functionally dependent on

X and not functionally dependent on any subset of the

attributes of X (X must be composite) (Date, 1977: 155).

For example, in Figure 3, the attribute CRHOURS

is functionally dependent on the composite attribute

(NUMBER,TITLE), but is not fully functionally dependent on

23

W
"CC

0 r

cr, rf c rc'

0 0 0

W- -I

..-1 *.
C))

N

0 00

'-9 '.4 f-A)f

z 0 00

00

4-24

(NUMBER, TITLE) since it is functionally dependent on the

subset NUMBER.

With the above definitions in mind, three normalized

relation forms can now be defined.

Definition 2.41: A relation R is in first normal form

if and only if all underlying attributes contain atomic

values only. A relation R is in second normal form if it

is in first normal form and every non-key attribute is

fully dependent on the primary key. A relation R is in

third normal form if it is in second normal form and every

non-key attribute is nontransitively dependent on the

primary key (Date, 1977: 157).

By restricting relations to third normal form,

relational systems can eliminate the occurance of

redundancy and update anomalies. Thus, when a tuple is

modified, added, or deleted, normalization will ensure that

changes are made only to that single tuple.

Operations on a relational database may be specified

in either a relational algebra or a relational calculus,

corresponding to a low- or high-level query language. The

relational calculus specifies the desired output of the

query and allows the DBMS to select the appropriate method

to obtain the results. A relational algebra must specify

not only the output, but also the method (steps) to obtain

it.

Relational operations may be classified by their

handling of a single relation or by more complex treatment

25

of multiple relations. The basic operations on a single

relation include selection, projection, modification,

addition, and deletion. Selection identifies the desired

tuples in a relation by specifying the values of certain

attributes within the relation. If a value of the primary

key domain is specified, only a single record or no records

are selected. If the primary key is not one of the

attributes specified, however, many records may be

selected. For example, Figure 5 is a selection result of

"List COURSES where CRHOURS equals 4."

Projection identifies the attributes of interest

within the selected tuples. When multiple records are

selected, the elimination of some attributes by the

projection operation may leave duplicate entries among the

partial tuples that remain. Therefore, there are two types

of projection - one in which the duplicates have been

eliminated, and one in which they are included. Figure 6

shows a projection of the relation COURSE (Figure 3) on the

attributes TITLE and CRHOURS. Note that only 9 tuples

appear in the projection; the tenth tuple, THESIS, has been

omitted since it is a duplicate of the sixth tuple.

A modification operation changes the value of an

attribute in an existing tuple. Additions and deletions

are relatively simple because the relation's tuples are of

a fixed length and are not maintained in any (sorted)

order.

Division, intersection, union, and difference are four

26

Cr C- CI C C C c

ri)

CC

Er.-

CC-
Cr.

cr V~-- - ~ -V ~ -

F4-

Cr 4-

C, X"

4- 4- C

C) C"l E-,

T J: V. 4Cr. .

C-1

27

T~A-e ~ou rs

T -'-o o Losz'c T):! I5-

P 1"O)q)11tv and Stiqtistins3

MqTh et'i Of Comrnutcr Scltcie

11mital !q q11acr Lptbo-ato--v2

Softwqq-e SVqtp- ACqjUSjtjon4

Fl-r A "Pro 1ectI-on" On The Relation Course

28

other operations that are sometimes included in relational

data base processing. Division is a binary operation on

two relations that results in a new relation. It is useful

for answering such queries as "List all QUARTERS that offer

both COURSE MA746 and COURSE EE692." The remaining

operations are set theory operations that also operate

on two relations to produce a third. in each case, the

relations used as operands must have at least one common

domain.

The primary operation on multiple relations, the

"join", is the relational equivalent to the set definition

in the CODASYL databases. Given two relations which have a

common attribute, the join combines the tuples of each

relation where the values of the common attribute are

equal. The result is a third relation in which each tupie

consists of a tuple from the first relation concatenated

with a tuple from the second relation which contains the

same attribute- value (except that one of the two identical

attribute- values is eliminated). If a value in the common

attribute appears in one relation and not the other, tuples

containing that value do not participate in the join. For

example, consider the relation QNS as shown in Figure 7.

The relation QNS is joined with the relation COURSE (Figure

3) on the attribute NUMBER as shown in Figure 8. Note that

several of the COURSE tuples do not appear in the join

because there was no match on the NUMBER attribute value.

In the above paragraphs, the relational operations

29

Nmler S ti Idlevt

--,E' 0 A!."e-

Alle

9Tjp1 7---600 Jones

~P~1 ITA7QQYork

Fiz,'re 7 The ielation QNS

30

CV 4-,
N- 0 0 U* 0 0

00

4C) c;

0 0f)

0 4 -,

lzz
0

o o C

0)) Z Cr

02 c 4') b 4.) ILI
.C GC0 - ! . .

- ' -I 0 cd r4 0

M C --. 0 C
C'- C'- , %'c 0- C-

ZD :4 -: -4 -c -c

- 0 02) cr C/C OW r

31

have been seperately discussed. However, it is also

possible to select from joins or projections, join

selections, join projections, project on a selection or

joined relation, etc.

The relational algebra and relational calculus based

retrieval languages are very powerful. They are in fact

relationally complete. Relational completeness means that

any derivable relation can be retrieved from the database.

It means to the user that, if the information wanted is in

the database, then it can be retrieved. In lower-level

languages the user must write quite complicated procedures

to answer all but the simplest questions.

The most obvious distinction between CODASYL and

Relational systems is that CODASYL data items can be

repeated but relational domains cannot. For example, a

CODASYL QUARTER record may have a repeating item

identifying the COURSES offered. The relational equivalent

is a separate QUARTER-COURSE relation with one tuple for

each QUARTER- COURSE pair. The disadvantage of this

approach is that some of the data, that is, QUARTER, are

repeated in each tuple. On the other hand, one advantage

is that the relation's length is fixed and, therefore,

usually easier to process. Relations may be thought of as

highly disciplined files - the discipline concerned being

one that results in a considerable simplification in the

data structures the user has to deal with, and hence in a

corresponding simplification in the operators needed to

32

manipulate them.

The relational structure is very easy to understand.

But simplicity of data representation is not the end of the

story. Observe that the uniformity of data representation

leads to a corresponding uniformity in the operator set:

Since information is represented in one and only one way,

only one operator is needed for each of the basic functions

that one wishes to perform. This contrasts with the

situation with more complex structures, where information

may be represented in several ways and hence several sets

of operators are required. For example, the network-based

DBTG system provides two "insert" operators: STORE to

create a record occurance, and CONNECT to create a link

between an "owner" and a "member".

A simple query to a large relational database may take

a prohibitively long time to process due to the overhead of

having to use a very large pointer structure within the

data base files. To decrease this time in applications

requiring fast response, parallel processing is necessary.

It just so happens that relational algebra queries are very

conducive to being processed with a high degree of

parallelism. Specifically, three levels of parallelism are

capable of being performed on relational algebra queries:

independent parallelism, pipelining, and node splitting.

Under certain conditions, the exploitation of these levels

makes highly parallel processing and short response times

possible.

33

Independent parallelism includes the parallelism

between separate queries and the parallelism between

independent operations in a single query. Pipelining

parallelism includes the parallelism between succeeding

operations of a relational algebra query applied to

different portions of data. Node splitting parallelism

includes the parallelism between duplicate copies of an

operation in a relational algebra query applied to

different portions of a relation's data.

For example, consider a query of the following

database of three relations show~n in Figure 9. Ri and R2

contains information about hospitals and doctors

respectively. R3 contains information about the

"employment" relationship between hospitals and doctors

(including the distance betwee~n a hospital and the

residences of the doctors it employs) . The query is "Find

all the hospitals in New York city which have emergency

treatment facilities (STATUS > 20) and heart specialists

living within 30 miles." The relational algebra query for

the above consists of the following steps.

Si: Select R1 where CITY ='NY' -STATUS > 20 giving TR1.

S2: Select R2 where SPECIALTY ='HEART' giving TR2.

S3: Select R3 where DISTANCE < 30 giving TR3.

Ji: Join TRi and TR3 over H# giving TR4.

J2: Join TR2 and TR~4 over D# giving TR5.

The relational algebra hierarchy reflecting the above

steps is shown in Figure 10. First notice that all three

34

H# 'Name CI.v Status Others

Thrie Relation ?ospital (R1)

D* DNa me Specialty AdHress Other

The Relation Docto- (R2)

D# H# Dstance Salary O1her

The Relation Employnent (R3)

F1-"re Q The Medical Database

35

J2i

T2

TI T

S2

SI S3

36

SELECTION branches Si, S2, and S3 are independent (i.e.

there is no precedence relationship among them), and so

they can be processed in parallel. Ri, R2, and R3 have to

be stored in different storage modules so that parallel

access without contention is possible. The parallel

processing of the three SELECTIONS can be finished in

maximum of [time(Sl), time(S2), time(S3)]. J1 and S2 are

also independent and can be processed in parallel. The

total execution time with parallel processing of the

independent nodes is: time(J2) + maximum[time(S2), time(J1)

+ maximum<time(Sl), time(S2), time(S3)>].

To further improve the response time, the inherant

parallelism between adjacent nodes in the relational

algebra hierarchy must be explored. Note that J1 does not

have to wait for the completion of either S1 or S3 to

perform its operation. J1 can use the outputs of SI and S3,

one tuple at a time, while SI and S3 still keep producing

tuples one by one. Therefore J1 and S1,S2 can be processed in

parallel and form a "pipeline". The same logic can be

applied with J2 and T2,T4.

Next, note that the SELECTIONS of different portions

of a large relation are in fact independent processes. To

further improve response time, the relations SI and S2 can

be separated into several groups of tuples and have several

SELECTION (SI and S2) processes applied to these groups

concurrently. This is to "split" a node into several

parallel sub-nodes. If Si and S2 were each split into four

37

nodes, the execution time of either process would become one-

fourth of it's original time.

Response time of an urgent query can be shortened

significantly by utilizing this parallelism. The

identification and exploitation of parallel processable

subtasks in queries has other advantages also, for

example, better system utilization and simultaneous

services to a large number of users.

While the logical structure and the mathematical basis

of the relational data model are ver-y appealing, it should

be noted that the implementation, using a conventional Von

Neumann computer, results in many of the same problems that

current DBMSs try to overcome by using data models with a

link structure. That is, the two dimensional table becomes

a one dimensional string of data with pointers to link

related data items. This results in the creation of a

software interface from the logical data model to the

physical storage structure. This relatively simple

relational data model can be as complex as the traditional

logical data models when implemented on the Von Neumann

machine. This leads to the investigation of an alternative

computer architecture to support the relational data model.

38

Data Base Computer Architectures

Categorization. As presented earlier, a lot of

research has been directed toward the implementation of

DBMSs on backend computer architectures. Initial work

dealt with conventional backend architectures only, mostly

to prove feasibility, while more recent work has dealt with

he use of specialized architectures. Before discussing

both in further detail, consider the following

classification scheme proposed by Olin Bray (Bray, 1979a:

99). The two criteria established for this classification

scheme are the number of processors involved in the data

base processing and the type of hardware organization used

to search for the data directly on mass storage devices or

indirectly in some buffered or intermediat, storage area.

The five categories comprising this classification scheme

are

1) Single processor indirect search (SPIS)

2) Single processor direct search (SPDS)

3) Multiple processor direct search (MPDS)

4) Miltiple processor indirect search (MPIS)

5) Multiple processor combined search (MPCS)

In the indirect search approach the data is first

staged from permanent storage to local memory and then

searched. Implementations may use either conventional

memory/storage or associative memory/storage. In the

direct search approach the data is searched directly at the

location where the data is stored. These implementations

39

use only associative memory/storage.

The number of parallel processors used is important

because it directly relates to performance. The types of

requests that typically occur in a data base management

operation involving the search of an entire file/relation

or database lend themselves very well to parallel

processing. In these cases, if the file/relation or

database were divided into separately accessable blocks of

data, a set of parallel processors could perform the search

much faster than a single processor. In addition, with the

cost of hardware dropping by a factor of 20 to 30 percent a

year, microprocessors are a very cost-effective means of

implementing parallel processing.

Where the database is searched also affects

performance. The search may be performed directly on the

mass storage unit where the data is permanently stored or

indirectly in some intermediate storage area. The

objective is to perform the search as close to the source

as possible to avoid the delays due to data movement.

Because of the rotational speeds and transfer speeds of

mass storage devices today, however, most of the direct

searches can involve only very simple selections. Complex

boolean expressions just cannot be evaluated without

skipping records, thus requiring one or more disk

revolutions. The result is a tradeoff between query

complexity and performance, and the choice between a

direct-search database computer and an indirect one may

140

depend on the applications involved.

Singe Processor Indirect Search. The single

processor indirect search (SPIS) corresponds to the

conventional general-purpose processor. In this

traditional approach, part of the database is read from

its permanent storage on moving head disks into the

intermediate staging storage of random access memory

(RAM). Index tables and pointers are used (file

management system or hierarchical DBMS or network DBMS in

which data are requested by application programs a tuple-

at-a-time) to determine which parts of the database are

staged into the system's main memory. This block of data

is then processed to determine the records that are to be

retrieved or modified. Although the implementation details

may differ, all current file management systems and DBMSs

operate essentially in this fashion.

A backend computer architecture system would be

inefficient for low-level, record-at-a- time requests

because a request message and response message would have

to be passed between host and backend for each and every

record to be retrieved. For record-at-a-time operations,

this approach would actually degrade the system's

performance.

This is not true for high-level queries because the

backend can relieve the host of a significant amount of

work between the time it receives a request and the time it

returns an answer, an answer which may consist of up tc

41

hundreds of records.

Initial research efforts of backend computer

architectures all consisted of approaches in the SPIS

category. The approaches of interest were XDMS (Bell

Laboratories), IDMS (Cullinane Corporation), KSU (Kansas

State University), and MADMAN (General Electric). They all

used mini-/micro- computers for the backend processor. The

first three used very slow communication links (less than

or equal to 480 0 baud) while MADMAN used a shared memory

link (see Figure 11). The first three used commercially

developed and marketed DBMs packages loaded completely on

the backend computer while the MADMAN approach developed

its own DBMS package and loaded only the CPU activities of

the DBMS on the backend machine, leaving the DBMS disk

I/O operations on the host (see Figure 11). The main

question regarding these research efforts had to do with

the feasibility of efficient communication between the host

software and the backend DBMS software. If the

communication between the machines became a bottleneck,

then such an approach would be fruitless. Such was

determined not to be the case and so its feasibility was

proven. A much faster communication link (approximately IM

baud) would be required, to eliminate processor delay

caused by waiting on inter-processor communication

transmission, Out such capability is within current

technology.

With the recent development of the following two

42

Memoy Hot Bae'

Finr 11 The Malmari Svstq- ArcotqtiirR

technologies, an ability to now quite easily take advantage

of the relational model was brought about. They consist of

the following.

1) Solid-state (LSI and VLSI technology) content

addressable memory devices (parallel and serial) which

permit the construction of longer words, minimize the cross-

talk problem, require less energy and permit the use of

components with loose tolerances, and

2) Intelligent memory devices such as disk, bubble and

CCD having search capabilities similar to associative

memory, an ability to now quite easily take advantage of

the relational model, which bears a 1:1 relationship with

associative storage.

The result has been new efforts which proceeded on to

replace these conventional backend computers with backends

using specialized architectures; the goal in sight of

boosting the capability and speed of information prccessing

systems. These special architectural approaches are

described in the following discussions covering the

remaining four classification categories.

Single Processor Direct Search. In this approach, the

data are searched by the backend, and only the desired

records or their specified parts are sent to the host (the

relational data model is used). This reduction in data

volume, using selection and projection operations,

significantly reduces the work load on the host by

eliminating many relatively simple tests on large amounts

of data that were normally performed by the host (tuple-at-

a-time processing). This approach is classified as a

direct search because intermediate storage is not used for

the data search. By not having this intermediate storage,

however, only a limited set of relational DBMS query

operations and not a complete set can be supported.

CAFS Architecture. CAFS (Content Addressable

File Store) was designed as a highspeed search device and

is an example of the SPDS approach (Bray, 1979a: 101).

Figure 12 shows the overall architecture of the system and

Figure 13 shows the major components within the CAFS

architecture itself. CAFS also is classified under the SISD

category. Data from the disks stream through the backend

where the selection is performed. Records which meet the

selection criteria are then passed to the host.

Sixteen key registers are used in the comparisions as

the data are streamed through the system. These results

are passed to the search-evaluation unit to evaluate the

complete logical expression of the query. Multiple 64K

bit array buffers are incorporated in CAFS for joins and

the elimination of duplicates following projections and

may be used to hold input data for the search evaluation

unit. The retrieval unit is used to buffer records to be

sent to the host.

The essential problem that CAFS addressed was the

rapid location and retrieval of records when the selection

criteria are based on data values within the record rather

45

-P Er 4-) Er 4.) , -)I

m 0 as0 Lt C

r

c>
C -4t

k ILa.

0
4i 4-)

:2 C:4

P--

0

'C\

CC'

-,0

46

Key Registers
Nar'e Val1u'.

All Namie
Value Pairs

~ost A~res, Joining

Filter Indexes

Flizire 13 The CAFS ArchItecture (1Bray, 19Q:s103)

47

than the record's position. The problem is even more

severe when any of the fields in the record or parts of a

field in the record can be used as search keys. CAFS was

designed to overcome these problems through the use of

pointers to large blocks of data, for example a track,

rather than individual records. This block is then scanned

serially to locate the desired records.

CAFS is strictly a retrieval system and does not allow

on- line updating of data. Higher-level functions such as

sum and average are left for the host to calculate. Being

an SISD machine, the backend can only process one query at

a time.

Multiple Processor Direct Search. Figure 14

illustrates the basic characteristics of the multiple

processor direct search (MPDS) approach, of using a

processor to directly search each track of the database.

As the storage devices (CCDs, MBM~s, drums, or head-per-

track disks) rotate, data are read into the corresponding

track processor, which then examines the records to

determine which ones should be selected or modified. The

data "stream" (transfer) off the track, through the

processor and are then written back to the same track

within the same revolution. The amount of processing that

can be performed on a single revolution, therefore, is

limited by the speed of the track processor and the speed

of the rotating device. If processing is not completed in

a single revolution, then flags must be set in each record

48

TP=Trqck Processor

Fliire 14s The Miiltlple Processor 'Direct Search
(Bray, 1070-.107)

49

to indicate its selection and the degree of processing

completed.

Using a MPDS approach, the entire database can be

searched in a single revolution. In fact, by having

multiple compare registers with each processor, it may be

possible to answer several requests in a single

revolution. Multiple flags would be needed in each record

for each request being processed.

The tradeoff that has been made with the direct-search

approach is to minimize the response time rather than the

storage costs. Since all tracks of the database are read

and processed in parallel, response time is independent of

the size of the database and is simply a function of the

time to read a single track. The penalty for 'this constant

response time is the cost of storage. Storage costs grow

at a rate equal to the amount of data being stored. As

more tracks/disks are required, more track processors must

also be added.

Unfortunately, a serious problem exists due to this

continuous read from and write to the database for every

revolution - backup and recovery. Constant rewriting of

the entire database significantly increases the number of

errors as compared to a conventional system. The ability

to issue a rewrite due to a write error does not exist in

this architecture.

CAS Architecture. CASSM (Context Addressable

Seqment Sequential Memory) was developed at the University

50

of Florida (Su, 1979) and is an example of the MPDS

approach (see Figure 15). CASSM, a SIMD machine, performs

parallel processing of the database so that the time

required to perform many of the database functions is

independent of the size of the database. Head-per-track

disk devices were used for the database storage units. The

track processors all process the same function assigned at

the same time thus enabling the entire database to be

processed in one revolution. Within each track processor, a

set of operating modules operate in a pipelined parallel

fashion in processing the instruction (see Figure 16).

CASSM's design assumes that the entire database resides

online and is available to all N track processors. The

storage could be implemented using CCD, MBM, etc. such that

the data appear to be rotating past some fixed point (bit

serialized associative storage). Then, as the data rotate,

every word is read, processed, and written back to this

storage device. Being a SIMD architecture, CASSM only

processes one query at a time.

Unlike conventional rotating storage, a CASSM track

processor contains separate read and write heads for each

track (see Figure 16). Every word of storage then can be

read, and, if not deleted, written back on each revolution.

Word insertions cause every word thereafter to be shifted

down one position on the track while word deletions cause

every word thereafter to be shifted forward one position on

the track. CASSM was designed to be used in conjunction

51

Cortroller 'Is

FiQ-vrc 15 T' i CAS.9Y Syqtf-?n Architecture
(Bray, 1070:100)

52

Gr""=szp Collection

Co'rt-q A

S lit I0 LT

It

Fl'1re 1(, The CASSM :Zierv Processor Ar&'itqcture
(Bray, 1970:110)

53

with a general- purpose host processor issuing high- level

data management queries. It was one of the first attempts

to construct a special architecture for general non-numeric

processing.

Multiple Processor Indirect Search. The multiple

processor indirect search (MPIS) approach is very similar

to the MPDS approach in that multiple processors are used

to process the database in parallel. The main difference

is that not all of the database is processed in parallel.

Instead, a part of the database is staged into an

intermediate storage device and then searched there. This

approach is shown in Figure 17.

For this approach to be feasible, the capability must

exist to be able to quickly identify those parts of the

database which must be processed and to load them into the

intermediate storage. Quick identification will still

require pointers, but pointers only to large blocks of

data, for example, tracks or cylinders, rather than

individual records. Rapid loading of the intermediate

storage will require a high data transfer rate and

buffering within the intermediate storage. For the MPIS

approach, the time to process a transaction is indirectly

dependent on the size of the database.

The following two subsections describe two systems

using the MPIS approach. RAP (Relational Associative

Processor) is a SIMD type approach and DIRECT is a MIMD

type approach. Both were specifically designed for non-

54~

Stor'a ge

Processor I

Processor -- is

~'v' 1 TeM'~tieProcessor i~rc Sac

(13rav, 1070: 121)

55

numeric data management.

RAP Architectpire. RAP was developed at the

University of Toronto in the mid 1970s (Ozkarahan, 1975;

Schuster, 1976) . The overall RAP architecture is illustrated

in Figure 18. The host is responsible for compiling the

high- level user queries into RAP commands, scheduling the

operations for RAP, transmitting the RAP instructions to

RAP, handling all database integrity and security, and

maintaining all the relation and domain tables. RAP

consists of a controller, a set function unit (SFU), and a

number of cell processors, each connected to its two

adjacent neighbors.

The design is composed of a controller, an arithmetic

set function unit, and a parallel organization of cell

processors (Figure 19). A cell processor consists of a memory

component and a logic component. The memory unit is one

track of a rotating device such as a disk, drum, circular

shift register, etc. The logic component is a

microprocessor which acts as a "search machine" on data,

directs manipulation, and performs limited numeric

computations required by database processing. The set

function unit is used to combine cell processor results to

obtain a value computed over the total memory contents. The

controller is responsible for overall coordination and

sends control sequences to the cell processors, controls

the set function unit, and executes decision commands and

other RAP primitives that can be accomplished directly in

56

Cell 1

Data Base

.10.t - or--oll r -------- Data Bas

Cel NI Data 73ae

Flsiv- 1P The RAP System Archtectii-'e
(B-ray 9, 170:126)

57

00

C5
cc,

C3-

C5C

C: C

CM

r-4,

UT C)

IL.

0 U)

itself.

RAP is based on the relational data model, with the

data stored in normalized relations. Only one type of

relation can be stored on a single track. If there are

too many tuples for a single track, then any number of

additional tracks can be used. Neither contiguous tracks

nor ordered tuples are required. If the RAP database is

small enough, it can be stored completely within the cell

processor's memories and operate as a direct- search system

because staging is not required. The more general case is

that the database is too large and must be stored on a

conventional moving-head disk.

Intermediate storage within each RAP cell processor

contains the equivalent of one disk track of rotating

memory, for example, disk, COD, or MBM. Like CASSM, the

data, rotating through the intermediate storage, are read

into the cell processor's buffer, processed, and written

back to intermediate storage. The tuple size is limited to

the buffer in the cell, for example, RAP's buffer size was

1024 bits.

DIRECT Architecture. DIRECT was developed at the

University of Wisconsin (DeWitt, 1979) and is currently in

the stage of implementation refinement (Boral, 1980; Boral,

1981). The overall DIRECT architecture is illustrated in

Figure 20. Where RAP is a SIMD approach only able to

process one instruction at a time, DIRECT is an MIMD

approach and so is capable of simultaneous execution of

59

x 0

00

* C.-

0 C~ a

Q)o 0

00

p co0 IIc

0 c p

YC1

0cc

060

query instructions from different users. DIRECT is very

similar in operation to RAP with the exception that the

intermediate storage units are not specifically assigned to

a query processor. Through the use of an interconnection

matrix, any intermediate storage unit is accessible by any

query processor. The controller makes dynamic

determination of the number of processors assigned to each

query to be processed.

Using DMA data transfer, the controller stages tracks

from main storage to the intermediate storage units and

informs the query processors of which intermediate storage

unit to access in order to process that information. As

with RAP, only one relation is stored per track. The

intermediate storage units were constructed using CCD

chips. The relations are not assigned to a query

processor, but instead, a data flow technique is used in

which the query steps are assigned and processed by the

whole set of query processors.

Multiple Processor Combined Search. The multiple

processor combined search (MPCS) approach combines several

of the best features of both the direct- and indirect-

search approaches. This approach handles the

complexity/performance tradeoff issue by directly searching

the data with track processors for simple queries and

staging the data in buffers for more complex evaluations.

DBC Architecture. DBC (Data Base Computer) is an

example of the MPCS approach (Banerjee 1979). It is under

61

development at the Ohio State University. It has three

major objectives: 1) to support very large databases of 10

to 100 billion bytes, 2) to support multiple data models,

including hierarchical, network, and relational, and 3) to

use current technology and not rely on significant

technological breakthroughs.

Modified moving-head disk technology is used in order

to support the very large on-line database storage. DBC

employs two forms of parallelism. An entire cylinder's set

of tracks can be processed in parallel by a processor

assigned to each track within the disk pack. DBC uses a

pipeline architecture which provides a separate unit to

process each step of an instruction. The basic

architecture is conceptionalized in Figure 21. The DBC

makes use of two loops of processors and memories in

executing the commands. The data loop, which consists of

the database command and control processor (DBCCP), mass

memory (MM), and security filter processor (SFP), is used

for storing and accessing the database, for post processing

of retrieved records, and for enforcing record field level

security. The structure loop, which consists of the

database command and control processor (DBCCP), keyword

transformation unit (KXU), structure memory (SM),

structure memory information processor (SMIP), and index

translation unit (IXU), is used for limiting the mass

memory search space (through the determination of cylinder

numbers), for determining the authorized records for

62

P roc, ssorStruc
t lr

IndexKeywiord
Trarslation Transformati.o

HO t C, C ntro

Da

o

a

ta

S21 The DBC Syqtc!Ti Architecture (Rare rjefe, 1070,415)

63

accesses, and for clustering records received for insertion

into the database. The system was designed completely

around the security design to enable full security

capability for this system. This system can process

multiple queries at a time.

Comparisons. Note that each of the categories'

architectures presented have been built upon the

architectural design of the previously presented

category. It so happens that the ranking of these

categories correspond to the sequence of events in the

research and development in this field of computer

science. Each of these research efforts have produced

respectable results as well as insights and questions

bringing on further investigation and development of yet

more sophisticated architectural designs. As comparisons

are made and discussed in these next paragraphs, the

motivations behind these successive developments will come

to light.

In terms of response time, the MPDS architecture

offers the best performance by allowing the entire

database to be searched in one mass storage revolution.

As in CASSMt s case, since the data definition is carried

with the data on mass storage, no indexes of any kind are

required - the data may reside anywhere on disk - all

within reach of the query processors within one mass

storage revolution. The drawbacks to this system are 1)

such a system is currently only effective for small

6~4

databases, because of its higher storage costs, and 2) due

to the constant rewrite of the entire database, recovery

becomes a nightmare. Such an architecture is an excellent

advancement over previous efforts, in terms of using a

direct access mechanism along with a set of processors, but

there was plenty of room for improvement.

The next logical step was to use a data-staging

technique and stage organized blocks of data from mass

storage into an intermediate storage. This approach solves

the growth/cost penalty problem substantially and now also

enables conven~tional recovery techniques to be used since

instantaneous rewrite is no longer being accomplished.

Thus an 4P:S architecture is created. But there is concern

regarding the reduction in response time due to the

additionlal process of staging blocks of data to and from

mass storage. Whether or not a reduction does occur boils

down to whether a SIMD or MIMD architecture is used. RAP,

though dealing with an organized database (relations stored

on separate mass storage tracks) , only processes one

instruction at a time. Relations whose total number of

blocks is less than the number of query processors

availablE, and relations whose total number of blocks

divided by the number of query processors available yeild a

large remainder, will render the remaining available query

processors useless for all or part of the duration of that

query processor instruction. In this case, response time

would be reduced - all other factors being equal. By

65

adding more intelligence to the controller processor, and

making use of an already existing relation block index

structure, query processors found to be idle could begin

processing another query instruction of the same or a

different query, and thus boost the performance of the

system, as in DIRECT's case. Thus another step forward

has again taken place, in this case, from a MPIS (SIND)

architecture to a MPIS (MIMD) architecture. Again, each

development has produced excellent results over previous

efforts and agreeably, without these valuable stepping

stones, progress would not have come this far at this time.

There is plenty of agreement that excellent benefits

exist in both the MPDS and MPIS architectures, so why not

put to use the best of both architectures. Instead of just

transferring the blocks of data from mass storage to the

intermediate storage units, why not perform some level of

direct search processing on that data as it streams off the

track over to intermediate storage, and then proceed with

the more complex query processing on the staged blocks of

data. Thus the MPCS architecture, specifically DBC's

case, is created. Where one goes from here in terms of new

architectural approaches is yet to be conceived. But in

the mean time, by concentrating on improving the building

blocks themselves that will make up these present

approaches, much can still be accomplished. By

incorporating more sophisticated CAM, CCD, MBM, etc. into

these architectures, both in terms of quality and quantity

66

(VLSI), query processing response time for laige database

systems using the relational model, will easily be

achieved.

Summary

The first of four problems identified in the purpose

of this thesis effort was to determine the feasibility of

applying multiple processor techniques to the,

implementation of a relational DBMS within a micro-/mini-

computer system environment. Based on the information

brought to light within this background chapter, the

feasibility of such an architecture is now a certainty.

The remaining chapters in this thesis address the last

three problems identified in the purpose of this research

effort.

67

III. System Development

Introduction

This chapter covers the initial system development for

an AFIT Backend Relational DBM computer system. In the

first section, the longterm requirements and goals are

identified, first in general terms and then in more

specific terms. Justification of these requirements and

goals is given. In the next section, at the overview

level, the system design is presented. The system

functions and interrelationships, the system hardware

architecture, and the system support software are defined.

In the next section, a system development plan is

presented. Based on the system design, a set of subsystem

development stages are identified. The resources and

constraints for each stage are also identified so as to

specifical-y define what functions will be implemented

or must be simulated for each stage of the system

development. A summary concludes this chapter.

Longterm Requirements and Goals

The longterm requirements and goals for the

development of an AFIT Backend Multiple-Processor

Relational DBM computer system have been determined to

consist of the following items.

(1) Permit a multiple number of users to share the

database as a common resource (i.e.: a network member).

(2) Use a MIMD approach to permit a high level of

68

parallel processing of users' queries.

(3) Design a multiple processor system which does not

waste a large percentage of its processing potential by

permitting processors to bl.e idle, particularly in a multi-

user environment.

(14) Considerably improve on the system response time,

system throughput, and cost of database storage in

comparison with existing software laden DBMS's run on

general purpose computers.

(5) Provide complete modularity in both the software

and hardware design of the system in order to enable it to

(a) be easily modified throughout its initial development

and (b) be used as an easily modifiable AFIT research test

bed for investigating and implementing alternative state-of-

the-art architectures.

(6) To be used in both an AFIT pedagogical environment

and an actual AFIT supportive information processing

environment.

Let it be emphasized that the central goal is to

develop a DBMS that can provide a very respectable online

response time to a very large variety of queries generated

by a multiple number of users against a large database.

From the background material presented in Chapter II, it

should be clearly evident that to accomplish this central

goal, the use of the relational data model, a backend

computer system composed of a set of processors, and some

type of intermediate associative memory storage is, to

69

date, the only real route to take in order to achieve the

speed and size qualities desired.

Based on an analysis made of all the key features of

backend computer systems, the relational data model, state-

of- the-art memory technology, and the different relational

DBMSs implemented on special purpose hardware, a set of

functional and architectural features were selected for

their inclusion in the development of a backend DBMS in

this thesis. Specifically, the design of the backend

multiple- processor relational DBM computer system, as

currently envisioned, will include the following features.

(1) A complete set of relational algebra based

operations will be provided. Having a complete set means

that any derivable relation can be derived from the

database. Therefore, if the information wanted by the user

is in the database, it can be retrieved.

(2) A set of N query processors in the backend

computer architecture will be provided to support the

parallel processing of a single relational query. Three

levels of parallelism are capable of being performed on

relational algebra queries - independent parallelism,

pipelining, an .i node splitting. Exploitation of these

levels using multiple processors will make highly parallel

processing and short response times possible.

(3) One or more mass storage devices to contain the

entire relational database will be used. This will require

using moving- head disk devices.

70

(4) A multiple access path to the database will be

provided so as to fully support the parallel processing of

a single relational query. Having simultaneous access tc

the database by the N query processors will provide a

complete parallel processing capability (data access and

data processing).

(5) A set of M (where M >> N) intermediate memory

modules will be provided to enable the physical concurrent

access of the relational database. By staging relations to

separately accessable memory modules, the query processors

can then concurrently access and process the data.

(6) Enable the size of a relation to surpass the size

of the memory module device. By dividing the relation into

logical pages and staging these pages to the intermediate

memory modules, the size of a relation need not be

restricted.

(7) A dynamic determination of relation page

assignments to query processors will be provided. An

entire relation does not have to be processed by a single

query processor for a given relational query operation, but

can be paged out to N processors and processed in parallel.

(8) A dynamic determination of the number of

processors assigned to process a relational query will be

provided.

(9) A set of N query processors, each executing the

same query step, will be permitted to simultaneously search

different pages of a common relation.

71

(10) A set of N query processors, each executing

different queries, will be permitted to simultaneously

search the same page of a relation.

These are the longterm requirements and goals, both

broad and specific, for the development of the backend

relational DBM computer system. While the capabilities of

this system are quite clearly defined, the method of

implementation of certain parts of the architecture leaves

room for several alternative approaches. They are as

follows.

(1) Type of intermediate storage modules to use.

(2) Hardware configuration and method of data

transmission in the staging of relation pages from the mass

memory device to the intermediate memory modules (IMM).

(3) Hardware configuration and method of data

transmission in the accessing of relation pages from the

IMMs by the query processors.

(4) Hardware configuration and method of data

transmission between the query processors and the backend

controller processor, and between the host computer and the

backend controller processor.

Random access memory, associative memory, charge-

coupled memory, magnetic bubble memory, hard disk memory,

or floppy disk memory could be used for the intermediate

memory modules. To handle data transfer between the main

storage and the IMMs, and the IMMs and the query

processors, either multiport memory modules or a cross-

72

point matrix switch could be used. Programmed 1/0, direct

memory access (DMA) , or memory module continuous data

broadcasting could then be used for actual data transfer.

For the initial design, multiport memory modules will

be used. Figure 22 shows the conceptional design approach.

This configuration will lend itself to easy modification in

many areas of the hardware architecture. These details

will be specifically discussed in a later section of this

chapter.

System Design

General Description. This Backend Multiple-Processor

Relational DBM computer system will consist of five main

components: a host computer, a backend controller

processor, a set of query processors, a set of dual-port

intermediate memory modules (IMM), and one or more mass

storage devices. A diagram of these components and their

interconnections is shown in Figure 23.

The host computer will handle all communications with

the users of the DBMS. Users will log onto a modified

version of Roth's Relational DBMS (Roth, 1979), and proceed

in the normal manner. When a user wishes to execute a

query, Roth's DBMS will format the already optimized user

query into a sequence of relational algebra operation

steps, called a "query packet", and then send it to the

backend controller processor over a communication link.

Query responses are received by the host computer from the

73

4-) V,

r- ----

cr

C-))

F-- 00

C)

0

a, 0

c: 0T

0 4-' 0

M4) =~
004

74

.~ (~3I
C

CY (3?

Ck

4.1.

75

backend controller processor via DMA data transfer from

the BCP's disk storage. The query responses are then

subsequently passed back to the awaiting user.

The backend controller processor is responsible for

interacting with the host computer, controlling the query

processors, and handling the transfer of data between the

mass storage and the IMM devices. When the backend

controller processor receives a query packet from the host

computer, it will determine the number of query processors

that should optimally be assigned to the query packet.

Before distributing the query packet to the selected query

processors, the backend controller processor will page, via

DMA data transfer, portions of the required relations into

the proper IMMs. During execution of the query packet steps

by the query processors, the backend controller processor

will continue to supply needed relation pages for

processing in response to query processors's requests.

The function of each query processor is to execute the

steps of the query packet assigned by the backend

controller processor. The query packet is received from

the backend controller processor over a communication link

to the query processor(s). The query processors then

receive from the backend controller processor the address

of which IMM to access to process the query step (multiple

IMMs can either be permanently dedicated to each query

processor or dynamically assigned by the backend controller

processor). Intermediate query results (temporary

76

relations) are written by the query processor out to

another IMM, also specified by the backend controller

processor.

To enable the support of both intra- and inter-query

concurrency of processing, the approach taken was to divide

each relation into fixed size pages and also divide the

memory into separately addressable memory modules having

the same size as a relation page. These relation pages are

then staged from the mass memory to the IMM modules and

also written back if updates were performed. Each query

processor will search an assigned page (staged in an IMM)

of a relation referenced in the query packet step. When a

query processor finishes searching one page of a relation,

it will then make a request to the backend controller

processor for the address of an IMM containing the next

page it should search. Once the address has been received,

the query processor must be able to rapidly switch to that

IMM device.

A relatively small page/IMM size shall be chosen. By

choosing a small page size, and having a large number of

IMMs, one will have a higher potential for concurrency of

processing. If the page size were too large then many of the

relations might fit on just a couple of pages. This would

limit the potential concurrency to just inter-query

concurrency instead of a mix of intra- and inter-query

concurrency. Another important reason for choosing a small

page size is to minimize the amount of internal

77

fragmentation which occurs when a relation does not fit all

of the pages it occupies. This could result when N query

processors, each processing the same query operation,

generate a partially filled page for the resulting

temporary relation. On the other hand, one must realize

that by having relatively small page sizes, many more pages

will have to be staged, resulting in a higher level of page

staging overhead for the backend controller processor.

Both the specific configuration of the system's

architecture (number of query processors) and the

characteristics of the database (size of relations) will be

determining factors in choosing a page size.

It is recommended that eight query processors and 148

IMMs be used in this implementation. Since both intra- and

inter-query processing is to be supported, anything less

than eight query processors would be insufficient in

supporting the concurrency concepts as described in the

Relational Data Model section of Chapter II. The

requirement of the number of IMMs is directly based upon

the number of query processors to be used. Forty- eight

IMMs are required for the following reasons. Eight IMMs

would always be under current access (one per query

processor); eight more modules would contain the next

page ready to be processed (anticipatory paging); 16 more

modules would be required in readiness to accept temporary

relation pages, and finally, 16 more modules (8 for current

pages and 8 more for next pages) would be required to

78

contain a page of a relation which is to be joined with the

current page being accessed.

The bandwidth of the intercommunication scheme must be

very high. Dual-port intermediate memory modules (each

connected to a single query processor and to the backend

controller processor) would be suitable for a medium-scale

implementation, but for a very large configuration a cross-

point switch (each query processor is connected to all the

intermediate memory modules) looks to be the only feasible

interconnection scheme. Traditionally, the use of cross-

point switches has been limited because of their high cost

and complexity due to the following requirements.

(1) High bandwidth between processors and memories for

addresses and data.

(2) Extremely fast switches to minimize the delay time

introdt~ced by the switch in each memory access.

(3) Contention detection and resolution hardware to

handle simultaneous access of two or more processors to the

same memory bank.

However, recent research in the design of cross-point

switches specially built for use in backend multiple-

processor database computer systems is occurring, in which

these traditional limitations are being overcome (Dewitt,

1979: 398). These new designs are now making such an

approach a very viable solution for large scale

implementations; i.e. 64 processors x 384~ memory modules.

79

System Functions. The following three sections

identify the backend multiple-processor relational DBM

computer system's functions as they relate to the three

major system components.

(1) Host Processor

(a) Convert the optimized query into a sequence of

relational algebra operation steps.

(b) Construct a query packet message

(c) Place the query packet message into a query

packet queue within priority of query.

(d) Recieve query response messages from the backend

controller processor.

(e) Format query responses for shipment to the user.

(f) Ship the query response to the awaiting user.

(2) Backend Controller Processor

(a) Access th;: query packet queue and move the query

packet message into a query packet execute table.

(b) Perform a security access rights check on the

user request. If access is unauthorized, reject

the user query.

(c) Perform a validation check on the query. If the

query is incorrectly formatted, reject the

user query.

(d) Examine a query packet and estimate the optimal

number of processors to allocate for processing

the packet; update the query packet execute

table.

80

(e) Perform staging of relation pages from mass

memory into the intermediate memory modules.

(f) Assign a query packet to query processors.

(g) Transmit query operations and relation's tuple

format to the query processor.

(h) Perform anticipatory staging of relation pages

from mass memory to the intermediate memory

modules.

(i) Control the locking and unlocking of relations

to enable the updating of a relation.

(j) Respond to a "next-page" request from a query

processor.

(k) Respond to a "get-page m" request from a query

processor.

(1) Perform the rewrite of relation pages from the

intermediate memory modules to mass memory.

(m) Create new relations as a result of temporary or

permanent relations generated by the query

processors.

(n) Delete relations which are no longer needed.

(o) Print relations, i.e. access an entire relation

for its subsequent transmission back to a host's

user.

(p) Perform a compaction/reorganization on a relation

to minimize page seqmentation.

(3) Query Processors

(a) Recieve a query packet from the backend

81

controller processor.

(b) Retrieve the "next-page" address from the backend

controller processor.

(c) Request the "next-page" address from the backend

controller processor.

(d) Request a "get-page m" address from the backend

controller processor.

(e) Switch to address of intermediate memory module

(f) Access the contents of the intermediate memory

module.

(g) Write temporary relation tuples into the

intermediate memory module.

(h) Perform the following relational algebra

operations.

(1) Select

(2) Project

(3) Join

(4) Union

(5) Modify

(6) Add

(7) Delete

(8) Maximum Value

(9) Minimum Value

(10) Count Value

(11) Average Value

82

System Hardware Architecture. The architecture of

this backend DBM computer system is categorized in Bray's

classification scheme under the category entitled

"Multiple Processor - Indirect Search" and is also

categorized in Flynn's classification scheme under the

category entitled "Multiple Instruction Stream - Multiple

Data Stream (MIMD)."1 An architecture using a set of

processors and a data staging methodology enables the

system to be functionally designed to accomplish

concurrent processing of individual query operations from

one or more user queries, thus providing a greatly reduced

and now respectable response time to user queries made

against a large online data base.

The host computer, containing the user's application

software and, if a network member, containing the network

interface software, will be responsible for passing and

receiving queries to and from the backend controller

processor. To handle such a workload and not be a

bottleneck in communicating with the backend controller

processor, the host computer needs to support a

multiprogramming environment and be directly coupled to

the backend controller processor by sharing memory and

using direct memory access (DMA) data transfer. By using

DMA having a high bandwidth and using interrupt circuits,

a much greater speed of 1/0 operations between these

computers can be achieved while at the same time freeing up

both CPUs to do more important processing instead of

83

having to be tied up with executing routines that

determine I/O device status.

The backend controller processor will contain the

major portion of the software written for the backend

system. The relationship between the backend controller

processor and the query processors will be a Master - Slave

relationship: the backend controller processor is the

master and each query processor is the slave. Since the

master has eight slave processors to keep busy,

instructions and data must be supplied to the processors

very quickly in order to uphold the high degree of

parallelism desired. In order to quickly satisfy the query

processor requests for relation pages, the backend

controller processor will (a) be connected to each of the

query processors in an indirectly coupled fashion by using

channel-to-channel adapters having a high bandwidth, and

(b) be connected to each of the intermediate memory modules

in a directly coupled fashion using DMA transfer between

the mass storage device(es) and the IMMs. Since messages

between the backend controller processor and the query

processors, though frequent in nature, will be quite small

in size, programmed I/O (from BCP to QP) and interrupt I/O

(QP to BCP) using a channel connection (one for each QP)

will be quite sufficient. On the other hand, relation

pages being staged to and from mass storage and the IMMs

will be both frequent and relatively large in size, thus

requiring the use of DMA transferring. A number of the

84

ADAL15 558 AIR FORCE INST OF TECH bMIGHT-ATTERSON AFI ON scHoo--ETC F/G 9/2DESIGN AND IMPLEMENTATION OF A 8ACKENO MIJLTIPLE-PROCESSOp RELAT--ETC(U)
DEC 81 R W FONQEN

UNCLASSIFIED AFIT/GCS/EE/81D-6 N

ii, iiiihi2mhh iiiii

primary software functions will be interrupt driven by the

query processors.

The query processors will be responsible for the

processing of existing relations and the generation of new

relation pages (for both temporary and final relations).

A microprocessor will be used for each of the query

processors, each containing enough local memory to contain

its software plus working storage.

Since the query processors and the backend controller

processor both require access to the IMMs, a dual-port IMM

device will be used. Each query processor will have access

to six of these dual-port IMMs. Since the query processors

will function as slave processors to the backend controller

processor, the case will never occur where a query

processor and the backend controller processor both

concurrently try to address the same IMM. The query

processor will always be told in advance which IMM to

access.

The intermediate memory modules may be built using

content-addressable memory (CAM), charge-coupled memory

(CCD), magnetic-bubble memory (MBM), random-access memory

(RAM), or disk memory. The requirement of having dual-port

access to the IMM is the only requirement which must be

met.

System Support Software. The system software for

these three computers should be written using both a high-

level programming language and an assembly language. A

85

high-level language such as PASCAL should be used for the

major part of the software because it is a block structured

language which is very compatible with top-down pseudo-

code written design documentation. An assembly language

will be required for writing the low level program/hardware

interface routine modules.

UCSD PASCAL, which consists of an operating system,

the PASCAL language, a screen-oriented editor, a linker,

and a debugger, will be used for this development effort

(UCSD, 1979). This is a very capable development system and

is used by a wide variety of micro- and mini- computers.

Selection of an assembly language will solely depend

on the choice of computers used for each of the processors

to be implemented in this development effort.

Sstem Development Plan

General Description. Due to the complexity and size

of this computer system, a plan of attack has been

formulated as to specifically what the sequence of

development must be to effectively design, build, and test

this system. This sequence has been carefully grouped into

development stages.

It is imperative that the documentation for each stage

of this development effort be accomplished in a thorough

manner, and that a top-down structured design and coding

approach be taken. If this is not rigorously followed,

development effort in succeeding stages of the plan may

suffer.

86

Development Stages. The stages of development for the

construction of this computer system are as follow.

Stage (1) Design and implement the functions of the

backend controller processor.

(a) design and write 'the software for the BC?

(b) simulate a DMA interface to/from the host

computer by using a parallel link

(c) simulate the host computer and software

Cd) simulate the QP and its software

(e) simulate the 1MM and its software

(f) simulate a DMA interface from the mass

storage device to the IMMs using a set of

serial links

(g) simulate a parallel interface to the query

processors using a set of serial links

Stage (2) Design and implement the functions of the

query processor.

(a) design and write the software for the QPs

(b) talk to the backend controller processor

using the current interface

(c) simulate access to the IMMs using serial

links

Stage (3) Design and implement the modifications to

Roth's Relational DBMS.

(a) design and write the software

(b) interface with the backend controller

processor

87

(c) interface with the AFIT local network

Stage (4) Design and implement the following.

(a) the DMA link between the hcst and backend

controller processor

(b) the set of parallel links between the backend

controller processor and the query processors

(c) the dual-port IMMs and the DMA and parallel

communication links to the processors

Stage (5) Develop and test alternative parallel

processing optimization algorithms.

Stage (6) Develop and implement the IMM devices using one

of the following technologies.

(a) MBMs

(b) CCDs

(c) CAMs

(d) head-per-track disks

Stage (7) Develop and test a cross-point matrix device.

Stage (8) Simulate alternative system -onfigurations

in search of an optimized system configuration

i.e. numbers and ratios of query processors

and IMMs; sizes of IMMs; connection scheme

between query processors and IMMs; mix of

simple and complex relational queries.

Note that this sequence of development stages does not

have to be accomplished in a totally serial fashion.

Stages one ,two and three may be accomplished in parallel,

and stages five and eight, six and eight, or seven and

88

eight may be accomplished in parallel. Stage seven would

be dependent upon whether or not stage six was

accomplished.

Resource Requirements. The resource requirements must

be outlined as to what equipment will be required for each

stage of the development effort as well as the time frame,

otherwise the work to be done will be not only difficult to

accomplish, but would eventually come to a halt. The

resources required for each stage of the development effort

are as follows.

(1) Stage 1

(a) The microcomputer to be used as the backend

controller processor.

(b) a micro-computer to simulate the host

(c) a micro-computer to simulate a query

processor(s)

(d) a serial interface to the query processor(s)

and a parallel interface to the host computer

(e) a micro-computer to simulate an IMM(s)

(f) a serial interface to the "IMMs" from the

BCP and the QPs

(2) Stage 2

(a) The microcomputer to be used as the query

processor.

(b) items la, 1b, 1d, le, 1f.

(3) Stage 3

(a) The computer to be used as the host system

89

(b) the local network interface communication

link.

(c) items la, Id.

(4) Stage 4

(a) items la, 2a, 3a.

(b) DMA boards and links for the host/backend

interface and backend/IMM interfaces

(c) Parallel port boards and link for the

backend/query processor interfaces and the

query processors/IMM interfaces.

(d) dual-port IMM devices

(5) Stage 5

(a) A completely functioning system composed of

eight query processors and 32 IMMs.

(6) Stage 6

(a) The complete system

(b) the dual-port IMMs chosen to implement

(7) Stage 7

(a) The complete system

(b) the parts to construct a cross-point matrix

(8) Stage 8

(a) access to QGERT, SLAM, or other capable

simulation language.

(b) access to a computer system which supports

the chosen simulation language.

90

Summary

The second and third problems identified in the

purpose of this effort were to 1) determine the system

requirements, both the longterm and shortterm requirements

and goals, and 2) develop a structured, modular system

design (software and hardware using current state-of-the-

art technology) for implementing the required system over

the longterm, identifying experimental tradeoffs. Both of

these problems have now been fully addressed. The system

requirements were thoroughly defined, and then, based on

these requirements, a system design was developed. A

general description was given, its system functions

defined, its hardware configuration defined (including

alternative tradeoffs) and the development support software

specified.

Toward the end of this development process, it became

fully evident that the time necessary to accomplish the

detailed design, implementation and testing of this system

design would indeed span several thesis efforts worth of

work. Thus a system development plan was created; a plan

of attack specifying an organized sequence of development

stages (thesis efforts) for designing, building and

implementing this system; each stage building upon the

accomplishments of the previous stage.

The remaining chapters of this thesis address the

fourth and final problem defined in this thesis: the

detailed design and implementation of the backend

91

controller subsystem (the heart of the backend data base

computer system), thus establishing the initial stage and

cornerstone of this system.

92

IV. Subsystem Design

Introduction

This chapter describes in more detail the design of

the software developed for the backend controller processor

subsystem of the backend multiple-processor relational data

base computer system.

For ease of discussion and reader comprehension, the

relational query operation formats will first be described,

next the BCP subsystem data tables shall be identified and

discussed; then the BCP subsystem functions and logic flow

will be presented; and finally the message formats for

inter-processor communication will be described.

Query Operation Formats

As identified earlier, the relational operations to be

supported in this implementation are: select, project,

join, union, modify, add, delete, maximun, minimum, count,

and average. The relational algebra (RA) data base

sublanguage was chosen to be used because in being an

algorithmic approach rather than a mathematical non-

procedural approach, (as in relational calculus) , the RA

data base sublanguage is both easier to learn and easier to

implement and use.

The operands for each of these RA operations consist

of variable byte length fields, in order to avoid wasting

space. Delimiters are used to indicate the end of each

operand field. Appendix B contains the detailed formats for

93

each of the RA operations when transmitted from the host to

the BCP.

Subsystem Data Tables

The subsystem data tables are the foundation upon

which the subsystem functions are constructed and are able

to accomplish their tasks. Since this is a relational

data base system, care has been given to minimize the

number, size, and use of system tables in support of the

data base processing operation.

Twelve BCP subsystem data tables, maintained in main

memory in linked list form (built via dynamic memory

allocation) , are used to accomplish the functions within

the BCP subsystem. These data tables consist of the

following.

1) domain name table

2) attribute name table

3) relation table

4) relation's attribute table

5) relation's page table

6) query processor table

7) query processor's 1MM table

8) query packet wait queue

9) query packet operation list

10) query packet execute list

11) query operation state table

12) transmit queue

p 94

The specific formats for each of the above subsystem

data tables are described in Appendix C.

Domain Name Table. The domain name table consists of

a complete dictionary list of all domains contained in the

entire relational data base. Attributes contained in

relation tuples are defined by specifying a "domain" of

values which they may take on. Each entry consists of a

domain name and a linked list of attribute name entries

currently defined against this domain set. This table is

used to support the validation editing of all attributes

referenced in query operation "join" steps of a query

request submitted to the BCP.

Attribute Name Table. The attribute name table

consists of a complete dictionary list of all attributes

contained in the entire relational data base. Each entry

consists of an attribute name, the number of bytes long the

attribute value may consist of, and the data type the

attribute represents. This table is used to support the

validation editing of all attributes referenced in each

query operation step of a query request submitted to the

BCP.

Relation Table. The relation table consists of a

list of all relations making up the relational data base.

Each relation entry consists of a relation name, a

relation code number, a pointer to its relation attribute

table, a pointer to its relation page table, a lock

indicator, a lock owner identifier, the byte size of its

95

tuples, and the number of attributes which make up each

tuple. The relation table is used for validation editing

of query requests and for processing the query processor

requests from the QPs which process the query operation

steps. It is through this table that access is made to

the relation's attribute table and page table, to

accomplish preparation of query requests for submittal to

the QPs and later to accomplish the location, creation,

staging and rewriting of relation pages.

Relation Attribute Table. A relation attribute

table exists for each of the relations within the

relational database. Each relation attribute table

consists of a list of all the attributes which make up

each tuple of the relation. Each relation attribute table

is accessed through a pointer which exists within each

entry in the relation table. Each entry of the relation

attribute table consists of an attribute name, its byte

offset within the tuple, the byte length of the attribute,

the data type that the attribute represents, and a key

member indicator. These tables are used for query validation

editing and query format preparation for submittal to the query

processors.

Relation Page Table. A relation page table

exists for each of the relations within the relational

data base. Each relation page table consists of a list of

the page addresses for all the pages which make up the

relation's tuples stored in mass storage. Each relation

96

page table is accessed through a pointer which exists

within each relation entry in the relation table. Each

relation page table entry consists of a page number and an

address of where to access the page with mass storage. For

this initial implementation, each page of a relation will

consist of a PASCAL file residing on mass storage. These

relation page tables are used to support all QP requests

to locate, create, stage, and update relation pages being

concurrently processed by the QPs in processing the query

request(s).

Query Processor Table. The query processor table

consists of a list of all the query processors assigned to

the BCP to be used to process the query packet's

operations. This table is used to maintain the state of

each query processor, either in use, idle, or not on-

line. It is through this table that the BCP can assign

idle QPs to process a query request. Each query processor

entry consists of a QP number identifier, a state

indicator, and a pointer to its 1MM table.

Intermediate Memory Module Table. An

intermediate memory module table exists for each of the

query processors assigned to the BCP. Each 1MM table

consists of a list of all IMMs assigned to a each QP. Each

1MM table is accessed through a pointer which exists in

each QP table entry. Each 1MM entry consists of an IMM

address and the name of the relation page currently staged

to that IMM.

97

Query Packet Wait Queue. The query packet wait

queue (QPWQ) consists of a list of query requests, queued

in a FIFO manner, which are waiting to be processed. Each

QPWQ entry consists of an execution indicator, the query

request's message number, host-id, program-id, CRT-id, and

priority, and a pointer to its query packet operation

list. This table is accessed whenever another query

request can begin being processed by one or more QPs.

Query Packet Operation List. A query packet

operation list (QPOL) exists for each of the query

requests queued in the QPWQ. Each QPOL consists of an

entry containing a query operation step of the query

request. Each QPOL is accessed through a pointer which

exists within each query request entry in the QPWQ. Each

QPOL entry consists of an operation entry and a query

operands entry. The OPOL is generated upon successful

validation editing of the query request. It is this list

which is transmitted to the QPs assigned to process this

query.

Query Packet Execution List. The query packet

execution list (QPEL) consists of all query requests

currently being processed by one or more query processors.

Each entry in the QPEL consists of a pointer to its twin

entry remaining in the QPWQ (to enable access to the QPOL),

the query request message number, the optimal number of

QPs calculated to be used to process this query, the

current number of QPs processing this query, a pointer to

98

the query operation state table, a completion-of-

processing indicator, and the name of the relation

containing the answer to the query. This table is used to

determine what query request to assign to an idle query

processor. If all query requests currently in the QPEL are

being processed by each of their optimum number of QPs,

then a new query request is selected from the QPWQ, its

query operation state table is created, and the idle QP is

then assigned.

Query Operation State Table. A query operation

state table (QOST) exists for each of the query request

entries in the QPEL. Each QOST consists of a list of

entries, one corresponding to each entry in the QPOL. Each

entry consists of the name of the relation being processed

by its corresponding query operation step, a pointer to the

relation entry in the relation table (used to access its

page table for QP processing), a relation page currency

counter pointer, and count, total, maximum, and minimum

buffers (used to gather values generated by N QPs

processing COUNT, AVERAGE, MINIMUM, and MAXIMUM query

operations). It is through this table that proper currency

is maintained, as a multiple number of QPs process a query

operation step in parallel.

Transmit Queue. The transmit queue is used to

queue up, in a FIFO manner, responses to query requests

for subsequent transmission back to the host computer.

Responses consist of immediate answers to requests

99

(accepted or rejected) and also answers to previously

accepted requests. Each entry in the transmit queue

consists of the query request's originating message

number, host-id, program-id, CRT-id, and priority, the

final relation name containing the answer or the immediate

response answer, and a relation page transfer counter (used

when the relation answer contains a multiple number of

pages and may possibly require a multiple number of

transmissions to the host to send the complete relation

answer).

Subsystem Functions

The BCP subsystem is composed of nine specific

functions: six major functions and three minor functions.

The major functions are 1) check queues, 2) service a host

request, 3) assign a query processor, 4) service a query

processor, 5) answer a host request, and 6) backup the data

base. The minor functions are 1) initialization, 2) setup,

and 3) wrap up. A hierarchical tree diagram of the BCP

subsystem's functions is shown in Figure 22. The

discussions for each of these nine functions are presented

in the following sections in a sequence which follows the

diagram of Figure 22 from top down, left to right. As each

of these functions are described, additional elements of

this design will be brought to light.

Initialization. Initialization, a minor function, is

responsible for establishing a newly created database

state; a state in which the database contains no relations.

100

! IT

CCC

I , I C,
V) - 0 C

L~2
-4-

'c

00'

101

At startup time for the BCP, the operator specifies

whether or not a data base currently exists. When

initialization is requested, the system will proceed to

request the volume-id identifying where the system tables

(attribute name table, relation table, relation's attribute

tables, and relation's page tables) are to be saved

when a save or wrapup is requested. These tables are

subsequently used to accomplish the setup function the next

time the system is started up. Upon receipt of a valid

volume-id, a relation file and an attribute name file will

be created and initialized.

Setup. Setup, a minor fuction, is responsible for

establishing a state of readiness to process query requests

against an already existing data base. Setup accesses the

relation file, the domain name file, the attribute name

file, the relation attribute file, and the relation page

file from the previously specified volume-id and creates

and builds the following linked lists in main memory

(using dynamic memory allocation): the domain name table,

the attribute name table, the relation table, the

relation's attribute table, and the relation's page table

(see Appendix D for more detail regarding these system

files). Next the query processor table and its IMM tables

are created and then configured for the current state of

processing (number of QPs online for the current session).

Then the volume-ids are specified, identifying where the

data base relations reside. At completion of bringing the

102

BCP subsystem into a state of readiness, a message is sent

to the host indicating a state of readiness to process

query requests.

CheckQueues. Checkqueues, a major function, is

responsible for the decision making as to which process

function (service a host request, assign a QP, service a

QP, answer a host request, backup the database, or exit to

wrapup) to accomplish next. Since this function is

modularized into a single PASCAL procedure, different

selection algorithms can easily be substituted and used.

Obviously, the process-functions 'assign a query processor'

and 'service a query processor' will require much more

selection service by checkqueues than the other functions

since this is where the vast majority of the query

processing work will occur. Special condition checks are

made to ensure that 1) the query input queue does not

overflow, and 2) that a database request or wrapup request

is not accomplished until all the QPs become idle.

The initial approach taken for the selection algorithm

was to create a predetermined selection sequence and

step through this selection sequence table. The table was

carefully weighted with selection entries to perform query

processor assignment and query processor service

functions. For each of these functions, additional checks

were then made to determine if indeed this function

requires processing at the instance of selection. If not,

then the next entry in the selection table is accessed and

103

checked.

Service Host Request. Service host request, a major

function, is responsible for accepting a new query request

from the host computer, arnd preparing the request for

subsequent processing. By using the UCSD PASCAL intrinsics

UNITREAD, UNITWRITE, and UNITBUSY, messages can be routed

between processors in the background while the BCP software

executes in the foreground "uninterrupted"' (UCSD, 1979).

This being the case, a query request will already be

waiting in the BCP's input buffer when this function is

called.

First the query's access right (password and security

level) is verified. If a rejection occurs, a response

message is built and added to the host response queue

(transmit queue). If the access right is approved, then

the query content is validated to ensure proper format.

If the format is not correct, the request is rejected and

a response message is queued. Since a query request is

composed of relational algebra query operations (see

Appendix B) which generate intermediate relations, as a

query packet is edited, temporary entries must be created

in the attribute name table, the relation table, and the

new relation's attribute table in order to 1) edit

successive query operations and 2) eventually process those

query operations. If at any point in the editing an error

is detected, all the temporary entries are deleted and a

error response message is queued. When an error-free edit

104

results, the temporary relations are permanently added to

the above referenced tables. Within the relation table,

the temporary (intermediate result) relations are kept

track of to enable their deletion (table entries and

relation pages) when they are no longer required in the

processing of the query.

A new .entry for this query request is then added to

the query packet wait queue (QPWQ) and its query packet

operation table (QPOT) is then created. A response

indicating acceptance of the query request is then added to

the transmit queue.

The decision was made to limit the length of a query

request to 1000 bytes (size of input buffer) and also limit

the length of each query operation step to 100 bytes (size

of an entry in the QPOL). These size limitations can

easily be modified merely by changing a single constant

declaration.

Upon completion of handling this query request, the

input buffer is cleared and a new UNITREAD to the host

processor is issued.

Assign a Query Processor. Assign a QP, a major

function, is responsible for assigning a query request

packet to an idle query processor(s). When a new query

packet is to be processed, the entry in the QPWQ is

transfered to the QPEL and a QOST is created. At this

time, an estimation is made as to the optimal number of QPs

it will take to process this query. This estimate is added

105

to the QPEL entry. Each entry in the QPEL is examined to

see if another QP could be assigned to this query packet.

When one is found, the number of QPs in use is updated in

the chosen QPEL entry and the QPOL is then formatted into a

message and sent to the selected QP. If all QPEL entries

are using their full allocation of QPs, then a new query

packet from the QPWQ is transferred to the QPEL. If the

QPWQ is empty then a query packet in the QPEL will be assigned

more than its QP allocation in order not to waste QP usage.

Service a Query Processor. Service a QP, a major

function, is responsible for servicing a query processor

request. Those requests to be serviced include 1) get next

page, 2) get page n, 3) update page n, 4) add page, 5)

destroy relation, and 6) query processing completed. Since

relations consist of N fixed length pages, in order to

process a query request operation for a specific relation,

the QP has to process these pages one at a time.

'Get next page' requests are used in processing

selects, projects, joins , unions, deletes, and max, min,

ave, and count. For these operations, 'get next' rather than

'get page m' is used since a multiple number of QPs may be

processing this operation in parallel.

'Get page n' requests are used in processing join and

union operations (relation B of the pair of relations being

either joined or unioned). In this case each QP must join

all pages of relation B to the page of relation A received

as a result of the 'next page' request.

106

'Update page n' requests are used for add, change and

delete operations performed on tuples within a page of a

relation previously fetched.

'Add page' is used to add a new page to a relation

generated as a result of a select, project, join, or union.

'Destroy relation' requests are used to tell the BCP

to delete a relation (a temporary relation in most cases)

from the data base.

'Query processing completed' tells the BCP that this

query packet has been completely processed and that now the

QP is idle.

A response message is formatted and sent back to the

QP indicating what action was taken for that request. Each

time a request is serviced, the QOST relation currency

indicator entry is updated. For a 'next page' and 'get

page n' request, if there is another page yet to be

processed, it is staged into that QP's IMM, and then a

response indicating the action taken is given. For the

'update page n', 'add page', and 'destroy relation'

requests, a response indicating the accomplished action is

all that is necessary to be given. 'Query processing

completed' messages receive no response from the BCP since

the QP automatically goes into a state of wait for a new

query packet assignment.

Answer a Host Request. Answer a host request, a major

function, is responsible for communicating response

messages back to the host computer. To ensure coordinated

107

transmission between processors, the BCP responds with a

message back to the host computer for each message request

sent to the BCP. An immediate response message is sent to

the host indicating acceptance or rejection of a request,

and then at a later time the answer to the processed

request is sent back to the host.

Backup the Data Base. Backup the data base, a major

function, is responsible for saving the relation table, the

attribute name table, the relation's attribute table and

the relation's page tables, residing in main memory, back

to the predesignated mass storage device. This function is

accomplished when either a data base save request or a

wrapup request is submitted.

Wrapup. Wrapup, a minor function, is responsible for

calling the function "backup the data base" and then

performing a shutdown of the BCP software. This function

is accomplished when a wrapup request is submitted.

Subsystem Logic Flow

An overview of the system logic flow is defined in

this section. It is presented in three parts, each

corresponding to the processing performed by the host

computer, the backend controller processor, and the query

processor. Each part's logic flow is presented in a top-

down tabular format. The subsystem logic flows for the

host and the query processors have been included in this

section to give the reader a clearer picture in

108

understanding the subsystem logic flow for the backend

controller processor.

Note that this system's logic flow is designed to

accomplish all three levels of parallelism in the

processing of queries: independent parallelism, pipelining,

and node splitting; processes which will be easily

accomplished due to the utilization of the paging of

relations.

Host Computer Logic Flow

(1) If a new query has been submitted by Roth's System

(a) convert the query into a sequence of relational

operation steps

(b) construct a query packet message

(c) place the query packet message on the query

packet wait queue within priority

(2) If an interrupt request from the BCP has occurred

(a) receive the response message

(b) format the response for shipment to awaiting

user

(c) ship the response to the usetr

Backend Controller Logic Flow

(1) If ready to begin a new processing session

(a) if requested, perform initialization for a new

data base information system

(b) perform a setup of the database system tables

109

(2) If ready to begin processing a new query packet

(a) validate the user's access right; if fail, reject

the query back to the host computer

(b) validate the query; if unable to answer, reject

the query back to the host computer

(c) estimate the optimal number of QPs to be

utilized

(d) add the query packet to the execute table

(3) If a query processor is available

(a) select a query packet for processing

(b) if not already done, create a query operation

state table (QOST)

(c) determine next page(s) of relation(s) to stage

(d) if not already staged, stage page(s) to IMM(s)

(e) if required, lock the relation

(f) construct message to be sent to QP

(g) update the QOST

(h) send message to the QP

(4) If a query processor issued an interrupt request

(a) accept the QP's message

(b) if an update page request

(1) get page mn address

(2) switch to 1MM address

(3) write page-back to mass storage

(4) send update response back to QP

(c) else if it is a next-page request

(1) add count, total values to QOST entry

110

(2) update max, min values in QOST entry

(3) if another page can be processed by this QP

(a) if required

(1) switch to IMM address

(2) stage the page to the IMM

(b) update the QOST

(c) send next-page response to QP

(4) else since no more pages for this QP to

process

(a) update the QOST

(b) send next-page (NUL) response to QP

(d) else if it is a get-page m request

(1) if another page exists to be processed

(a) if required

(1) switch to IMM address

(2) stage page m to IMM

(b) update the QOST

(c) send the get-page m response to the QP

(2) else since Relation B has no more pages

(a) update the QOST

(b) send a get-page m (NUL) response to QP

(e) else if it is an add-page request

(1) determine a new page address

(2) switch to IMM address

(3) write page to mass storage

(4) update system tables

(5) send add response back to QP

; 111

(f) else if it is a destroy relation request

(1) destroy all relation page entries

(2) update system tables

(3) send destroy relation response to QP

(g) else since it is a query-completed response

(1) update the system tables

(2) unlock any locked relations

(3) move query request to the response queue

('4) set the QP into an available status

() If a response is queued for transmission to host

(a) if an immediate response type message

(1) build message

(2) send message to host

(b) else since it is an answer type message

(1) retrieve the answer relation

(2) for each page of the relation

(a) build the message

(b) send message to host with indicator that

more of the answer is contained in the

next message

() If a new query has arrived from the host

(a) queue the query request in the wait queue

() If a database save request has arrived

(a) set indicator so no more requests may arrive

(b) when all existing queries have been serviced

(1) perform a save of all system tables

(2) reset indicator to now allow new requests in

112

(8) If a wrapup request has arrived

(a) set indicator so no more requests may arrive

(b) when all existing queries have been serviced and

answers have been transmitted

(1) perform a database save

(2) inform host that BCP is terminating session

Query Processor Logic Flow

(1) At power up, initialize and wait for message from BCP

(2) Accept message from BCP

(3) If operation = SELECT or PROJECT

(a) if state = initial message

(1) initialize

(2) awitch to IMM address

(3) SEL or PRO tuples, write into local memory

(LM)

(4) if LM becomes full

(a) switch to destination IMM address

assigned

(b) write LM contents into IMM

(c) request BCP to add the page

(5) else if page processing completes

(a) request BCP for next page to process

(b) if state = response to add request

(1) go to step 3a3

(c) else since state = response to next-page request

(1) if received a next-page address to process

113

(a) switch to IMM address given

(b) go to step 3a3

(2) else since no more pages to process

(a) switch to destination IMM address given

(b) write LM contents to IMM

(c) request BCP to add page

(4) if operation = JOIN

(a) if state = initial message

(1) initialize

(2) switch to IMM address

(3) read page of Relation A into LM

(4) switch to IMM address given for Relation B

(5) perform JOIN storing tuple results in LM

(6) if LM becomes full

(a) switch to destination IMM address

(b) write LM contents into IMM

(c) request BCP to add page

(7) else if processing of page has finished

(a) request BCP for Relation B page m+1

IMM address

(b) if state = response to add request

(1) go to step 4a5

(c) else since state = response to get-page m+1

of relation B request

(1) if received a page IMM address

(a) switch to IMM address

(b) go to step 4a5

114

(2) else since no more pages (NUL) to process

(a) switch to destination IMM address

(b) write LM contents into 1MM

Cc) request BCP to add page

(d) else if state = response to next-page request

C1) if received a next page address to process

(a) go to 4a2

(2) else since no more pages to process

(a) go on to next instruction

(5) If operation =UNION

(a) request next page of relation A

(b) if get another page,

(1) request add page to relation C

(2) go to 5b

Cc) else since no more pages in relation A

(1) request next page of relation B.

(2) if get another page,

(a) request add page to relation C

(b) go to 5c1

(3) else since no more pages in relation B

Ca) go on to next instruction

(6) If operation =MODIFY or DELETE

Ca) if state = initial state

(1) initialize

(2) switch to 1MM given

(3) read tuples in page

115

(a) if key match occ'

(1) modify or delete the tuple

(b) go to 6a3

(4) request update of page and next-page

(b) else since a response to next-page

(1) if received a page

(a) go to 6a2

(2) since are no more pages

(a) go on to next instruction

(6) If operation = ADD

(a) switch to IMM address given

(b) search for an empty tuple position

(c) if there is sufficient room

(1) add the tuple to the page

(2) request the SCP to update the page

(d) else since sufficient room exists

(1) add the tuple to a new page (different IMM)

(2) request the BCP to add the new page

(7) else since operation = MIN, MAX, COUNT, or AVERAGE

(a) if state = initial message

(1) initialize

(2) switch to IMM address given

(3) read tuples and calculate MIN, MAX, COUNT,

TOTAL

(4) request the next-page IMM address and also

at the same time, return current values

calculated

116

(b) else since state = response to next-page request

(1) go to step 7a2

Note that a query request, which desires to perform

tuple adds, can only contain tuple add operations. The BCP

will then generate an individual query packet for each

tuple add operation. This process will ensure full

utilization of all query processors and not have to be

concerned with multiple adds occurring for the same tuple

add operation.

Inter-processor Communication

Communication between the processors within this

system consists of the following activities.

(1) Host to BCP communication transmission

(2) BCP to Host communication transmission

(3) BCP to QP communication transmission

(4) QP to BCP communication transmission

In the initial stage of the development of the

backend multiple-processor relational data base computer

system, parallel and serial bit transmission channel

communication links are used in connecting the processors

together. Data transmission through these channel links is

accomplished using UCSD PASCAL intrinsics UNITREAD and

UNITWRITE which reference packed array buffers containing

the messages to be transmitted. This method provides a

foreground / background multiprogramming environment

resulting in a savings for the software residing within

117

each processor of not having to perform programmed I/O for

data transmission.

Host / BCP communication. Two packed array buffers

are reserved in both the host and the BCP software, one for

sending requests to the BCP / receiving requests from the

host, and another for receiving responses from the BCP /

sending responses to the host. By having a paired set of

communication buffers, and using the UNITREAD, UNITWRITE,

UNITBUSY, and UNITWAIT instructions within UCSD PASCAL,

unsupervised I/O can simultaneously occur between the host

and BCP.

BCP / QP communication. Since the QPs are slaves to

the BCP, they must wait for response messages to their

requests sent to the BCP before continuing their

processing. Thus, only one communication buffer is

required within each QP's software to perform I/O with the

BCP. Since the BCP is the master to a multiple number of

QPs, it must maintain a separate communication buffer for

each QP with which it communicates. The BCP uses the

UNITREAD, UNITWRITE and UNITBUSY instructions when

communicating with the QPs. A UNITREAD instruction is

issued for each of the busy QPs in anticipation of an

upcoming QP request. When Checkqueues so dictates, a

check is then made (using the UNITBUSY instruction) to see

if the UNITREAD for a particular QP has been satisfied. If

the request was satisfied, then the request is processed,

a response using a UNITWRITE is made (with wait), and then

118

a new UNITREAD is accomplished. If the request is still

outstanding, then the next QP's corresponding UNITREAD

state is checked.

The specific message formats for communication from

the BCP to the QPs, and from the QPs back to the BCP are

contained in Appendix C. A set of comments

appear with each communication format for eack type of QP

request and BCP response.

Summary

Within this chapter, the detailed design of th backend

controller processor subsystem and its interprocessor

interfaces have been defined. Defined and described were

the subsystem functions, the subsystem data tables

necessary to support the BCP functions, the subsystem logic

flow, the query operation specifications and, finally, the

interprocessor communication details. With this

information defined in detail, a top down structured

modular design of the BCP subsystem was then accomplished.

This design, shown in structure chart form in Appendix A,

was then coded into UCSD PASCAL program code, each

structure chart module corresponding to a PASCAL procedure

(subroutine). Before any testing of the BCP software took

place, the entire BCP subsystem design had been completely

coded and thoroughly reviewed.

The next chapter will now address the planning and

accomplishment of the implementation and testing of the BCP

119

subsystem, the heart of this backend computer system.

120

VSubsystem Implementation and Testing

Introduction

This chapter covers the implementation and testing of

the software and inter-processor communication hardware

interfaces for the backend controller processor subsystem

of the backend multiple-processor relational data base

computer zystem. In the first section, the approach chosen

for accomplishing the implementation and testing of the BCP

subsystem is presented. Resources and constraints directly

affecting the implementation and testing are then

identified. In the next section the support software,

designed and implemented for the purpose of supporting the

implementation and testing of the BCP subsystem software,

is identified and presented. The final section presents

the implementation and testing results and then gives an

evaluation summary.

The fourth and final goal of this thesis project was

to fully implement the BCP subsystem, within a first stage

environment, as specified in the system development plan

identified in Chapter III. As a result of underestimating

the overall size of the BCP subsystem, a partial

implementation and testing could only be completed

within the time frame given for this thesis effort. Within

the content of this chapter, qualification will be given of

what was planned and indeed accomplished verses what was

planned but could not be accomplished.

121

Implementation and Test Aproc

Once the BCP subsystem's software was fully designed,

pseudo-coded, and programmed in the UCSD PASCAL language,

the next step taken was to create an implementation and

test plan. Within this plan, several activities for the

total implementation effort were identified. These

activities are listed below.

(1) Using a top down approach strategy for testing,

create a module test plan specifying the sequence of tests

anticipated. If top-level modules are implemented before

lower-level modules, the need for driver programs is

eliminated, and major interface problems are exposed before

they affect the logic of lower-level modules.

(2) Perform an incremental top down testing of the

program modules using program "stubs". Incremental testing

is an essential aspect of the top down testing

philosophy. Instead of unit-testing a large number of

modules and linking/compiling them together in one test

(only to discover that the system does not work and the

error is hard to find), systems should be tested in a more

controlled fashion. A small, high-level subset of the

system should be tested until it works. Since the high-

level subset calls lower-level modules, the Lower-level

modules should be simulated using program "stubs"

containing real module linkage logic, butk- not actually

performing any of the lower-level detailed work. Program

1 22

stubs could return a message or a constant output, or

simulate the timing of the lower-level work before

exitting. Once a high-level subset of the system is

working, testing continues by substituting program stubs

one at a time until the last module of the system has been

added.

(3) Create the test data for each module/function

based on the following module testing approaches.

(A) Insure that all program sc-gments of code are

executed. This is done by choosing test data to cause each

decision branch to be taken. Also, if a branch is

dependent upon a compound logical expression, test data

must be chosen for each of the possible logical

combinations.

(B) Insure that all equivalence classes for

input data are tested. This procedure entails breaking the

input into its components and testing combinations of valid

components until all equivalence classes of valid

components have been converted. Then the invalid

components from each equivalence class are tested

individually.

(C) Insure that all boundary values are tested.

This procedure entails testing the values at the borders of

the equivalence classes to detect "off by one" errors.

The test plan for stage one of this project was sub-

divided into seven phases of testing. The creation of a

seven phase test plan was necessary since a multiple number

123

of independent processors, each containing its own

subsystem software (developed software or test software),

were required to fully test the BCP subsystem. The seven

phases of software testing consist of the following.

(1) Test the newly created operating systems, for

each processor, containing the channel driver software for

interfacing multiple processors together. (Appendix F

contains all the necessary information to accomplish the

task of creating these new operating systems).

(2) Test the front-end host software in preparation

for interfacing the front-end and BCP processors.

(3) Test the BCP software up to a point where

interfacing to the query processors is required for further

testing.

(4) Test the query processor software in preparation

for interfacing the BCP and query processors.

(5) Test the BCP software up to a point where

interfacing to the IMMs is required for further testing.

(6) Test the IMM test software in preparation for

interfacing the BCP and IMM, and the QPs and IMM.

(7) Complete testing of the BCP subsystem.

One factor that significantly increased the

implementation effort was the need for complete error and

detection recovery as earlier described. Every module had

to be protected to withstand any user input regardless of

its likelihood. This is because a process, in any one of

the backend's processors, aborting due to an out-of-range

124

variable or other invalid input could result in a

contamination of the data base. Therefore, every module

was implementated to validate the inputs first and issue

error messages to be transmitted back to the user in lieu

of the normal response if an invalid input was detected.

This greatly increased the size and complexity of the

modules and yet did succeed in making the modules

impervious to invalid user inputs.

Resources and Constraints

The specific hardware configuration used to accomplish

the implementation and testing of the BCP software is shown

in Figure 25. Five processors were determined to be

necessary and sufficient to fully accomplish the Stage I

testing. Since dual-port IMMs were not available at the

time of this stage of development, a processor was used to

simulate the 1MM. Appendix E presents the specific hardware

interface details. Future upgrading in the follow-on stages

of this development effort are outlined in the system

development plan section of Chapter III.

Constraints encountered or foreseen in this stage of

the development consist of the following items.

(1) Each time a modification (correction, modification,

or module addition) is made, the entire subsyster''s software

package must be recompiled. Compiles currently take 15

minutes to accomplish, thus making developmental testing a

slow process. Compile times are expected to take longer as

125

CC-

0 C

Er

126

more and more modules are added to the subsystem.

(2) The UCSD PASCAL system, while allowing for the

dynamic allocation of memory, does not have a mechanism to

enable the release of dynamically allocated memory. Since

the BCP subsystem makes heavy usage of temporary table

entries (for the validation editing of new query requests

and for the creation of temporary "intermediate result

relations" table entries), its own internal memory

management system will have to be developed.

(3) The UCSD PASCAL system limits the number of

UNITNUMBERS to just 12 entries; a number sufficient

to interface, (in addition to the host and IMM), only

two query processors to the BCP. The operating system will

require modification before more query processors can be added.

(4) Only 56 K bytes of memory are available on an

LSI-11/02 in which to contain the BCP software, all its

interface communication buffers, the space for the

dynamically growing and shrinking subsystem tables, and the

driver software (one copy per UNITNUMBER). More memory

will be required as the configuration and/or data base is

expanded; snould consider going to a LSI-11/23 computer.

Test Support Software

To fully test the BCP subsystem requires the

development of a set of "processor test support software

stubs". Specifically, software stubs had to be written to

test the front-end host processor interface, the query

processors interfaces, and the IMM (processor simulated)

127

interfaces. Each are described below.

Host Processor Software. The host processor software,

(designed, implemented and tested within this thesis

effort) , was required in order to test the query request/

query response interfaces between the front-end host

processor and the BCP. Inputs generated by this test

package and sent to the BCP consist of the following

listed items.

(1) A sign-on request

(2) A relational query request

(3) A data base save request

(4) A wrapup request

Through the host's console, a text command is entered to

specify which of the above actions to accomplish. For

query requests, the operator simply specifies a pre-created

query disk file as the request to be submitted. Outputs

received from the BCP (immediate responses or query answer

responses) are displayed on the operator's console. Answer

responses containing multiple message blocks are easily

handled by the host software using a predefined protocol.

Through the use of UNITREAD and UNITBUSY instructions, all

I/O communication overhead for the host and BCP is

eliminated. The front-end host software design is shown in

structure chart form in Appendix G. Its program code is

contained in Volume II of this thesis.

Query Processor Software. The query processor

software (conceived and shown in structure chart form in

128

Appendix H), not yet designed in detail, would be required

to test the BCP / QP interface in which the BCP assigns

query packets to a QP, receives query operation requests,

performs internal answer formulation and actions, and

supplies responses to the QP(s). Software would be

required to accept the query packet messages and display

them on the QP's console for operator inspection, accept

and transmit operator formulated QP requests, and then

accept and display the BCP responses to those requests.

In this way, the QP dependent functions accomplished by

the BCP for staging and updating of relations to the QP's

IMMs could be fully tested.

IMM Software. The IMM, simulated by a processor whose

software design has not yet been formulated, would be

required to test the BCP / IMM interface and the QP / IMM

interface. Software would be required to accept commands

from both the BCP and the QP to accomplish receiving /

supplying relation pages. The commands are necessary since

direct addressing to the IMM cannot yet be accomplished.

Due to a shortage of UNITNUMBERS, only one IMM could be

included in this configuration, so both QPs had to be

supported by a single IMM. For the full implementation,

multiple IMMs will be assigned to each query processor.

Test Results and Evaluation

Within the BCP software, the following functions were

completely developed and tested.

129

(1) Initialization and Setup of the database system.

(2) Receipt of query requests from the host.

(3) Validation of query requests.

(4) Message responses to the host.

(5) Assignment of query requests to QPs.

(6) Performance of data base saves.

(7) Performance of wrapup and shutdown.

For that testing which could be accomplished in the

available time, no problems were encountered. The

detailed design has proven, thus far, to be very complete,

having no inconsistencies or failures. Continued

development and testing of this subsystem should prove to

be a smoothly accomplishable task.

130

IV. Conclusions and Recommendations

Overview

At the outset of this investigation, four problems/

goals were identified. The first problem was to determine

the feasibility of applying multiple-processor techniques

to the implementation of a relational DBMS within a

micro/mini-computer system environment. The second problem

was to determine both the long range and short range system

requirements and goals. The third goal was to develop a

structured, modular system design (software and hardware

using state-of-the-art technology) for implementing the

reqired system over the longterm, identifying experimental

tradeoffs. The fourth and final goal was to implement a

first stage system model to show feasibility and to

investigate tradeoff alternatives.

The first problem was met to a great extent based on

the information brought to light within the background

chapter (Chapter II) of this thesis. Through the merging

of three relatively new concepts (backend data base

computer systems, the relational data model, and data base

computers having specialized architectures) , the

feasibility of applying multiple-processor techniques to

the implementation of a relational DBMS within a mini/micro-

computer system environment became a certainty.

The second problem was clearly defined and addressed

in the system development chapter (Chapter III) of this

131

thesis. The longterm requirements and goals for the

development of this data base computer system were

specifically defined, drawing from the data gathered in the

feasibility study the best approaches in each of the three

researched areas. A system design', at the overview level,

was next accomplished. The system functions and inter-

relationships, the system hardware architecture, the system

support software, and the architectural alternatives were

defined. Due to the complexity and size of this system, a

system development plan was then developed in order to

effectively organize the development of this system over

several thesis research efforts, into its final

configuration.

The third goal was also clearly accomplished, and is

addressed in the subsystem design chapter (Chapter IV) of

this thesis. A fully detailed design of the BCP subsystem

and its interfaces to the front-end , query processors, and

IMMs was accomplished.

The fourth and final goal was, due to a time shortage,

only partially accomplished.

Recommendations

As specified in the system development plan section of

Chapter III, this thesis effort is only the initial stage

of a multiple stage effort to construct a full state-of-the-

art implementation of this backend multiple-processor

relational data base computer system.

Because of the modular design of this system's

132

architecture, several of the follow-on stages to this

implementation can be accomplished through concurrent

research efforts.

There is a large amount of very interesting research and

development to be pursued in this area of computer science.

The following recommendations are given concerning what

specifically needs further work/investigation.

(1) Expand the front-end host into a real front-end.

Perhaps design and implement modifications to Roth's

relational data base system (Roth, 1979).

(2) Interface the front-end to the AFIT digital

engineering laboratory computer network for the subsequent

implementation of a distributed data base system.

(3) Improve the mass storage technology from floppy

disk to moving-head or fixed-head hard disk devices.

Establish DMA linkages from mass storage directly to the

IMMs and also to the front-end computer. Then offload all

staging and front-end communication to a separate processor

(a little brother to the BCP).

(4) Implement the IMMs using bubble memory, CCD

memory, hard disk associative memory, or integrated circuit

associative memory within either a multi-port memory access

or cross-point matrix access configuration.

(5) Transition the entire system to an

alternative system architecture. Consider implementing all

the processors on a single or set of common busses.

Consider using the new Intell 432 micro-processor.

133

(6) Implement a full backup and recovery capability

for the system.

(7) Implement a distributed data base system, storing

databases at multiple computer sites, using either the DEL

network, a mini-network of micro-computer systems, or the

ARPANET or AUTODIN II.

(8) Establ-ish a set of performance evaluation tools

for measuring, fine-tuning, and comparing alternative

configuration implementations.

(9) Consider transitioning from PASCAL to an

alternative high-order language such as PL/Z, C, or ADA.

(10) Consider alternative data storage techniques and

access techniques to the "sequential tuple access within a

page / sequential page access within a relation"

techniques.

Final Comment

Backend multiple-processor data base computer systems

using both the relational data model and state-of-the-art

associative storage devices have great potential for

revolutionizing the information industry. By now solving

the efficiency problem, using multiple-processors and state-

of-the-art associative storage devices, the relational

view promises a simple, flexible approach to the

industry's information retrieval problem. Incredible

effort has been expended on the improvement of software

efficiency for DBMSs based, unfortunately, on conventional

134

computer architectures. With the advent of state-of-the-

art associative storage devices, and the use of multiple

micro-processors, it is now time to channel some of this

effort where even larger improvements can now be attained;

improvements just no longer reachable through software

improvements.

135

Bibliography

1. Banerjee, Jayanta and David K. Hsiao, "DBC - A
Database Computer for Very Large Databases," IEEE
Transactions on Cumputers,C-28(6):414-429 (June
1979).

2. Boral, Haran and David J. DeWitt, Implementation of
the Database Machine DIRECT, Mathematics Research
Center, Computer Sciences Technical Report #442,
University of Wisconsin, Madison, August 1981.

3. Bray, Olin H. and Harvey A. Freeman, Data Base
Computers, Lexington, D.C. Heath and Co., 1979.

4. Canaday, R.E. et al. "A Backend Computer for Data Base
Management," Communications ACM 17, 10 (Oct 1974): 575
- 582.

5. Chang, Philip Y.,"Parallel Processing and Data Driven
Implementation of a Relational Data Base System,"
Proceedings of the ACM:314-318 (Oct 1978).

6. Date, C.J., An Introduction to Database Systems
(Second Edition), Reading: Addison-Wesley, 1977.

7. DeWitt, David J., "DIRECT - A multiprocessor
Organization for Supporting Relational Database
Management Systems," IEEE Transactions on Computers, C-
28,(6):395-406 (June 1979).

8. Hutchison, J.S. and W.G. Roman,"MADMAN Machine,"
Computer Architecture News,7,(2) , (August 1978).

9. Maryanski, Fred J., "Backend Database Systems,"
Computing Surveys, 12 (1):3-25 (March 1980).

10. Maryanski, Fred J. and V.E. Wallentine, "A Simulation
model of a backend DBMS," Pittsburgh Modeling and
Simulation Conference, April 1976 : 243 - 248.

11. Ozkarahan, E.A. and K.C. Sevcik,"Analysis of
Architectural Features for Enhancing the Performance
of a Database Machine," ACM Transactions on Database
Systems,2,(4):297- 316 (Dec 1977).

12. Ozkarahan, E.A. et al.,"RAP - An Associative Processor
for Data Base Management," AFIPS Conference
Proceedings, 44:379- 387 (1975) .

136

13. Ozkarahan, E.A. et al.,"Performance Evaluation of a
Relational Associative Processor," A Transactions on
Database Systems,2,(2):175-195 (June 1977).

14. Roth, Mark A., The Design and Implementation of a
Pedagogical Relational Database System, Masters
Thesis, Air Force Institute of Technology, Dayton,
Ohio, 1979.

15. Schuster S. and E.A. Ozkarahan,"A Virtual Memory
System for a Relational Associative Processor," AFIPS
Conference Proceedings,45:855-862 (1976).

16. Schuster, Steward A. et al.,"RAP.2 - An Associative
Processor for Databases and its Applications," IEEE
Transactions on Computers, C-28,(6):446-458 (June
1979).

17. Su, Stanley Y.W. et al.,"The Architectural Fearutes
and Implementation Techniques of the Multicell CASSM,"
IEEE Transactions on Computers,c-2,(6):430-445 (June
1979).

18. UCSD (Mini-Micro Computer) PASCAL, Version II.0
Institute for Information Systems, University of
California, San Diago (March 1979). (Available from
AFIT/ENE).

137

Additional Readings

1. Adiba, M. et al.,"Issues in Distributed Data Base
Management Systems: A Technical Overview," Issues in
Data Base Management, Proceedings of the Fourth
International Conference on Very Large Data Bases:127-
153 (1978).

2. Anderson, Donald R.,"Data Base Processor Technology,"
AFIPS Conference Proceedings,45:811-818, (June 1976).

3. Anderson, G.A. and E.D. Jensen,"Computer
Interconnection Structures: Taxonomy, Characteristics
and Examples," ACM Computing Surveys,7,(4):197-213
(Dec 1975).

4. Artwick, Bruce A., Microcomputer Interfacing,
Englewood Cliffs, Prentice-Hall Inc., 1980.

5. Astrahan, M.M. et al.,"System R: Relational Approach
to Database Management," Transactions on Data Base
Systems, 1(6):93-133 (June 1976).

6. Babb, E.,"Implementing a Relational Database by Means
of Specialized Hardware," ACM Transactions on Database
Systems,4,(1):1-29 (March 1979).

7. Banerjee, Jayanta and David K. Hsiao, "Concepts and
Capabilities of a Database Computer," Transactions on
Data Base Systems,3,(4):281-318 (Dec 1978).

8. Baum, Richard I. and David K. Hsiao,"Database
Computers - A Step Towards Data Utilities," IEEE
Transactions on Computers, C-25,(12):1254-1259 (Dec
1976).

9. Boral, Haran and David J. DeWitt, Design
Considerations for Data Flow Database Machines,
Mathematics Research Center, University of Wisconsin,
Madison, 1980 (AD A086374).

10. Bray, Olin and Kenneth J. Thurber,"What's Happening
with Data Base Processors?," Datamation,25,(1)146-156
(Jan 1979).

11. Chamberlin, D.D.,"Relational Data-Base Management
Systems," ACM Computing Surveys,8,(1):43-66 (March
1976).

12. Champine, George A.,"Four Approaches to a Data Base
Computer," Datamation,24,(13):101-106 (Dec 1978).

138

13. Colon, Fernando C.,"Coupling Small Computers for
Performance Enhancement," AFIPS Conference
Proceedings,45:755-764, (1976).

14. Cullinane, J. et al., Commercial Data Management
Processor Study, Cullinane Corporation,
Wellesley,1975,(AD A035790).

15. DLV11-J User's Guide, (4 Channel Asynchronous SLU
Interface), Digital Engineering Corporation, 1978.

16. Enslow, Philip H. Jr., Multiprocessors and Parallel
Processing, New York, John Wiley and Sons, 1974.

17. Foster, Caxton C., Content Addressable Parallel
Processors, New York, Van Nostrand Reinhold, 1976.

18. Freeman, Harvey A., "A Bibliography of Local Computer
Network Architectures," Computer Architecture
News,7,(5):22- 27 (Feb 1979).

19. Hayes, John P., Compute Architecture and
Organization, New York, McGraw-Hill, 1978.

20. Hobart, William C. Jr., Design of a Local Computer
Network for the Air Force Institute of Technology
Digital Engineering Laboratory, Masters Thesis, Air
Force Institute of Technology, Dayton, Ohio, 1981.

21. Holland, Robert H., "Improve Information Access with
the Database Machine," Data Communications: 95-101
(March 1980).

22. Hutt, A.T.F., .A Relational Data Base Management
System, Chichester: John Wiley and Sons, 1979.

23. Katzan, Harry Jr., An Introduction to Distributed Data
Processing, New York, A Petrocelli Book, 1978.

24. Kim, Won,"Relational Database Systems," ACM Computing
Surveys,11,(3):185-211 (Sept 1979).

25. Lin, Chyuan Shiun, et al.,"The Design of a Rotating
Associative Memory for Relational Database
Applications," ACM Transactions on Database
Systems,l,(10:53-65 (March 1976).

26. Liuzzi Raymond A., The Specification of a Data Base
MAchine Architecture Development Faciliv and
Methodolog' for Developing Special Purpose Function
Architectures, Rome Air Development Center, 1980 (AD
A090826).

139

27. Lorin, Harold, Parallelism in Hardware and Software:
Real and Apparent Concurrency, Englewood Cliffs,
Prentice-Hall Inc., 1972.

28. LSI-11 / PDP-1103 Processor Handbook, Digital
Engineering Corporation, 1975.

29. Martin, James, Computer Data-Base Organization (Second
Edition), Englewood Cliffs: Prentice-Hall, 1977.

30. Meldman, Monte Jay, et al., RISS: A Relational Data
Base Management System for Minicomputers, New York:
Van Nostrand Reinhold Company, 1978.

31. Microcomputer Interfaces Handbook, Digital Equipment
Corporation, 1980.

32. Microcomputers and Memories, Digital Equipment
Corporation, 1981.

33. Mohan, C.,"An Overview of Recent Data Base Research,"
Data Base,10,(2):3-24 (Fall 1978).

34. Muklopadhyay, Amar,"Hardware Algorithms for Nonnumeric
Computation," IEEE Transactions on Computers,C-
28,(6):284- 394 (June 1979).

35. Oliver, Ellen Jane, RELACS, An Associative Computer
Architecture to Support a Relational Data Model,
Doctoral Dissertation, Syracuse University, 1979.

36. Sehan, Amrun and Timbul Maruap Sihombing, Data Base
Management System for Minicomputers, Masters Thesis,
Naval Postgraduate School, Monterey, California, 1979.

37. Selinger, P. Griffith et al., Access Path Selection in
a Relational Database Management System, Research
Report, IBM Research Laboratory, San Jose, 1979.

38. Thurber, Kennith J., "Computer Communication
Techniques," Computer Architecture News,7,(3):7-16
(October 1978).

39. Ullman, Jeffrey D., Principles of Database Systems,
Rockville, Computer Science Press, Inc., 1980.

40. Wallentine, Virgil E., Project Report For Functionally
Distributed Computer Systems Development : Software
and Systems Structure, Department of Computer Science,
Kansas State University, Manhattan, Kansas, 1977 (AD
A052751).

140

41.. Weitzman, Cay, Distributed Micro/Minicomputer Systes
Structure. Imple-mentation. and Application. Englewood
Cliffs, Prentice-Hall Inc., 1980.

~42. Yau, S.S. and H.S. Fung,"Associative Processor
Architecture - A Survey," Computing Surve-ys,9,(l):3-27
(Mar 1977).

141

Appendix A

BCP Structure Chart Documentation

This appendix consists of two sections documenting the

modular design of the backend controller processor's

software. The first section is a list identifying all the

modules in the software design. The '*' that appears to

the right of the module's title identifies that module as a

'common' module called by more than one calling module.

The second section is a set of structure charts showing the

interrelated structure of the modules within the subsystem.

flite that the filled-in bottom right corner of the module

box indicates that it is a 'common' module. The module

numbers in each section are used as a cross-reference

between both documentation sections.

BCP Module List

1.0 Backend Control Processor

1 .1 Initialization

1.2 Setup

1.2.1 Build Domain Name Table

1.2.2 Build Attribute Name Table

1.2.3 Build Relation Table

1.2.4 ~ Build Attribute Tables

1.2.5 Build Page Tables

1.2.6 Build QP Table

14L2

1.2.7 Build IMM Tables

1.2.8 Setup Configuration

1.2.9 Contact Host Computer

1.3 Process

1.3.1 Check Queues

1.3.2 Service QP Request

1.3.2.1 Access QP Request Queue

1.3.2.2 Read QP message

1.3.2.3 Process "Next-Page" Request

1.3.2.3.1 Determine Next-Page

1.3.2.3.1.1 Increment String Value

1.3.2.3.2 Switch to IMM Address *

1.3.2.3.3 Stage Page to IMM *

1.3.2.3.4 Build Response Message *

1.3.2.3.5 Update System Tables *

1.3.2.3.6 Send Message to QP *

1.3.2.3.7 Reset for next QP Request

1.3.2.4 Process "Get Page M" Request

1.3.2.4.1 Get Page M Address

1.3.2.5 Process "Update Page M" Request

1.3.2.5.1 Write Page to Mass Storage *

1.3.2.6 Process "Add Page" Request

1.3.2.6.1 Add a New Page Address

1.3.2.7 Process "Destroy Relation" Request

1.3.2.8 Process "Process-Complete" Response

1.3.3 Service Host Request

1.3.3.1 Read Host Request

143

1.3.3.2 Validate User Access Right

1.3.3.3 Validate Query Contents

1.3.3.3.1 Validate Operation Command

1.3.3.3.2 Validate operation Format

1.3.3.3.2.1 Increment KK Counter

1.3.3.3.2.2 Scan Operand Field

1.3.3.3.2.3 Validate Comparators

1.3.3.3.2.4 Validate Boolean Operators

1.3.3.3.3 Validate Relation Name

1.3.3.3.3.1 Position to Next $ delimiter

1.3.3.3.3.1.1 Increment KI Counter

1.3.3.3.3.2 Compare with Relation Table

1.3.3.3.3.2.1 Compare with Relation Entry

1.3.3.3.4 Validate Attribute Membership

1.3.3.3.4.1 Compare with Attribute Table

1.3.3.3.4.1.1 Compare with Attribute Entry

1.3.3.3.4.1.2 Validate Attribute Membership

1.3.3.3.4.1.2.1 Validate Attribute Entry

1.3.3.3.4.1.3 Validate Constant Field

1.3.3.3..5 Create Temporary Rel Table Entries

1.3.3.3.5.1 Save Off Relations

1.3.3.3.5.2 Build Temporary Relation Table

1.3.3.3.5.2.1 Find Unused Relation Code

1.3.3.3.5.2.1.1 Check Temporary Relation Table

1.3.3.3.5.3 Build Temporary Attr-Name Table

1.3.3.3.5.4 Build Temporary Rel-Attr Table

1.3.3.3.5.4.1 Find Attribute Match

144

....... a

1.3.3.3.5.4.1.1 Build Attribute Work List

1.3.3.3.5.4.2 Delete Attribute Work List

1.3.3.3.5.4.3 Add Bytes

1.3.3.3.6 Add Temporary Table Entries

1.3.3.3.7 Delete Temporary Table Entries

1.3.3.4 Add QPKT to QPWQ

1.3.3.5 Build a QPOL

1.3.3.5.1 Prepare the Operation Step

1.3.3.5.1.1 Hold the Relation

1.3.3.5.1.2 Load the Relation

1.3.3.5.1.3 Load through $ Delimiter

1.3.3.5.1.4 Hold the Attribute

1.3.3.5.1.5 Convert Attribute to Offset,Length

1.3.3.5.1.6 Load the Attribute

1.3.3.5.2 Insert the Destroy Operation Steps

1.3.3.5.2.1 Add Operand to Operation Entry

1.3.3.6 Add QPKT to XMIT Queue

1.3.4 Assign a QP

1.3.4.1 Determine if a QP is Available

1.3.4.2 Dtrmn if QPKT in QPEL needs a QP

1.3.4.3 Dtrmn if QPKT in QPWQ awaiting service

1.3.4.4 Update the QPEL entry

1.3.4.4.1 Estimate Optimal QP Usage

1.3.4.4.2 Create the QOST

1.3.4.5 Build Initial Message for QP

1.3.4.6 Send Initial Message to QP

1.3.4.7 Move QPKT from QPWQ to QPEL

145

1.3.5 Transmit to Host

1.3.5.1 Load Relation's Attribute Description

1.3.5.2 Load Relation's Tuples

1.3.6 Backup the Relational Data Base

1.3.6.1 Save the Domain Name Table *

1.3.6.2 Save the Attribute Name Table *

1.3.6.3 Save the Relation Table *

1.3.6.4 Save the Rel's Attribute Tables *

1.3.6.5 Save the Rel's Page Tables *

1.4 Wrapup

BCP Structure Charts

(Charts begin on following page)

146

pP

-4

02
(n

0

4

147

148

M C -

0

-,-4 73

cjtc

(v

cu-4 -- r, W

-4M

b-4 -4 -4 W 0 C4

-4 '-4

149

cc

02002
~4-4 0
aII co\

4-)'
'-4

V) 1 0 1

____ ___ __)) 0 0Z

4..)P-4 Q

CCy

w~c N

C 4.)

m .C%'4~

r/I bf 0

o C,
;4 .) (V

0)

CO-)

a) Ir N(

~rn - I).

-

m4 C-4)-
4) c' :5 -

151

o crcl\

C= N

.c - *

r~~C, 0O 0C

.,,S

4-52i

4-) r-4

(1) bc
r.

C'

153

4-)4)

CoOp

cr

CO) 0 E-4 04

4. H

E- CV

cy

Co PL.

P..6

a% P-4'A4

'E-4

.44-) H

Col

Co4 -9

'-I

15~4

o E4C-
04 ca -

4.) 0) r

Za

1) O cjf u

0n. c, (n0
a, EC

o a,~-~r ________ ,*4

03 cv a

b, 4.).
E.) uo'(a

m P-4 a) a)
4)4. j4 bLr

P44

Z 0V
.4.) a,4) 0 c

-o E-4'.

155

o E-4

4-) H

z N.

m00

4-)

to c

co0 C) /I n

0 0 Z4- 0 C,0)

0~~a P4 c cv-m yl

p 4) N- 00

op4 W- -- .i.cn\

0)c\.0
-~ E-4 C\l

$'-

p 4 w N

:3: 0.)U

Z c-
b 4

£0 PO(\
4-'H

156 ~

Z bC a)
Z c r :3

bc C

PLO 4- > N
0) co

157

0 04 4-)

4 4:C

4: 0c 4a N

4: =

4 4 ONC

Oocrr

4: 0E-4

H -4 4

c, p.c 0)

a) C1C'

r4 4 0 f0

158

0,

~E-4 Ir

C-

1-4

H 0

P44

4-40 E- P

0 :3

Q) 0(0

-4 I 2U

4..) cr

ILI 04- =
:z ,r

159__ _ __ .d~~'

4.) r2 -) c

Cci:
*0

-) .

e.- c

- -4) C'~

OV 0 4-)
cr E

i- I .P.-,C

10

T .)

H) c
H 0 C

o P.

c~ ~ 0- 4-

Fo C;

; 161

0

0 0)C-
A r

0

0o

aa

'-4 z:F-

0.- 4) E-

0

162

C $4 l 4-)

0 C 4-) C

4-) 4-) Cr)
-rl X -1
CC 0 F-i crl 0 c C",
0 Z a: ru *

PLO 1= C".
0
E-4

L -----------

163

C\l 4-)

>) cl

c 4-) Cn
IL (Z (r r -
T ri E-4 cf-\ e--i

E c-

rjo

164

$a 4 E-4 C*
E c'W I

0
4-~ EA

,c c165

F41)
C~4-) r-i

4-) Q -4-a
4..) 4- '

00

166

r-4

167

(L 4-)
4- C) 4..) C \

4-) 4-) 41 C

4) H (11
0 rz. a -- T

P-4

168

I,

E -

H 4-)
.- .4) 4)(,

E-4 0 4-

4) .-)

T~ IL -i 4

C 4 c

G F"-

0

4 . E-i C-

C

169

C\l
to:-' o

4-) M

sz Q)

170

vz c 0 Q)L

E- -4

171

E 43 A
9) 4- C I

172

4.) . .

0
4-)

rci-
F- IV%4c~

4-;)

4)

1

1' '

4-' .

174

4,-; m V 0 4 ,

-17

J 175

E- fO

4.-)

~c

7s.

176

EA > 0

0 , C177

0 s_

4 - C,

-p-4

0e T CU-

0 E-4
; ~4.).-

E-4 r-c'

r-1

OE0-E-4
~A 'C.;

4a -4

4.) = 4 M

P-4 0 f=

E-4

178

0E-4*

10 Ei
4. CY '-j

4-) X M y"

c00?

P-4CY

H3 - -
P $-

rC4 0o

GE-4 Q

w c -4

P4 r-r-

0O(.~-

179c

$ E4~

c~r~t-~1U

T~ r1 11
W) co

180

AD-A1lS 558 AIR FORCE IMST OF TECH WRIS.4?-PATTERSON AFS 0ON SCHOOEe I9/DESION AND IMPLEMENTAYZON OF A SACKENO MULTIPLE-PA OCE R RELAT--ETC(U9
DEC 81 R W FONOEN

UNCLASSIFIED AFIT/GCS/EE/81D-;6
NL3c jiIiiII

"'IN""mhhhhhmhhhh2IhhhhhlH

LC~ r-4 r4i C'

E-4

F- O

1- 4 c12

4-) I

0 4-) 0) Cv"

184

C,

C4

-4 A

C)~~ -4.- '

C3 cc C14

r- E-4

Q4 9 ~
>4Q V

M) c.i-I

En 4. z3C

182-

I- i G i

Appendix B

Relational Algebra Query Operation Formats

Each relational algebra operation is described through

the use of three columns of data: a field state, a maximum

byte size length for the field, and a description of the

field content.

In regards to the field state; R = required, and 0

optional. Optional fields grouped together indicate an

optional set which may exist in multiple set occurances.

A 1$1 indicates the termination of a data field

(fields are variable length with a maximum restriction), a

%' indicates the end of the occurance of optional field

sets, and a '#' indicates the end of a query operation. A

'I' is used to indicate the end of the entire query

request.

184

1) The SELECT operation format.

field state max byte size field description
------ -------------------------------

R 6 "SELECT" command
R 1 "$1 delimiter
R 20 relation name
R 1 "$" delimiter
R 20 attribute name
R 1 ,,$" delimiter
R 1 comparator
R 1 "$" delimiter
R 20 constant
R 1 ,,$" delimiter

0 3 boolean operator
0 1 "1$"t delimiter
0 20 attribute name

0 1 "$" delimiter
0 1 comparator
0 1 "$" delimiter
0 20 constant
0 1 "$" delimiter

R 1 "%" delimiter
R 20 relation name
R 1 "$" delimiter
R 1 "#" delimiter

185

2) The PROJECT operation format.

field state max byte size field description

------------------------- ------------- -----------------

R 7 "PROJECT" command

R 1 "$1" delimiter

R 20 relation name

R 1 "$" delimiter

R 20 attribute name

R 1 ,,$,, delimiter

0 20 attribute name

0 1 ,,$. delimiter

R 1 ,,%1, delimiter

R 20 relation name

R 1 "$" delimiter

R 1 "#" delimiter

186

.3) The JOIN operation format.

field state max byte size field description
------ -------------------------------

R 4 "JOIN" command
R 1 "$" delimiter
R 20 relation name 1
R 1 ""$1 delimiter
R 20 relation name 2
R 1 "$" delimiter
R 20 attribute name 1
R 1 "$" delimiter
R 20 attribute name 2
R 1 "$" delimiter

0 20 attribute name 1
0 1 "$" delimiter
0 20 attribute name 2
0 1 "$" delimiter

R 1 ,'%" delimiter
R 20 relation name
R 1 "8" delimiter
R 1 "#" delimiter

187

4) The ADD (insert) operation format.

field state max byte size field description

R 3 "ADD" command
R 1 "$" delimiter
R 20 relation name
R 1 1"$" delimiter
R 20 attribute value
R 1 "$" delimiter

0 20 attribute value
0 1 "$" delimiter

R 1 "%" delimiter
R 1 ,,#, delimiter

188 J

5) The DELETE operation format.

field state max byte size field description

R 6 "DELETE" command
R 1 "$" delimiter
R 20 relation name
R 1 '1$" delimiter
R 20 attribute name
R 1 "$" delimiter
R 1 comparator
R 1 "$" delimiter
R 20 constant
R 1 "$" delimiter

0 3 boolean operator
0 1 "$" delimiter
0 20 attribute name
0 1 "$" delimiter
0 1 comparator
0 1 "$" delimiter
0 20 constant
0 1 "$" delimiter

R 1 "%" delimiter
R 1 "#" delimiter

189

6) The MODIFY operation format.

field state max byte size field description

------ ------------------------------

R 6 "MODIFY"f command

R 1 11$11 delimiter

R 20 relation name

R 1 ,,$11 delimiter

R 20 attribute name

R 1 "$" delimiter

R 1 comparator

R 1 It$" delimiter

R 20 constant

R I "$"? delimiter

o 3 boolean operator

o 1 ,,$,, delimiter

0 20 attribute name

0 1 ,,$.1 delimiter

0 I comparator

0 1 It$" delimiter

0 20 constant

0 1 11$,, delimiter

R I "%" delimiter

R 1 ,,#1, delimiter

190

7) The COUNT operation format.

field state max byte size field description

------ ---------------------------------
R 6 "COUNT" command

R 1 ,,$,, delimiter

R 20 relation name

R I ,$1' delimiter

R 20 attribute name

R 1 .$. delimiter

R 1 comparator

R 1 ,$, delimiter

R 20 constant

R 1 "$" delimiter

0 3 boolean operator

0 1 "$" delimiter

0 20 attribute name

0 1 "$" delimiter

O 1 comparator

0 1 .$. delimiter

0 20 constant

0 1$,, delimiter

R I "I" delimiter

R I .#,, delimiter

191

8) The MAX, MIN, and AVE operations format.

field state max byte size field description
------------------------- ------------- -----------------

R 3 "MAX,MIN,AVE" cmd
R 1 "$" delimiter
R 20 relation name
R 1 "$" delimiter
R 20 attribute name
R 1 .$,, delimiter

R 1 "#" delimiter

192

9) The CREATE operation format.

field state max byte size field description

-------------------------- ------------- -----------------

R 6 "CREATE" command

R 1 ,,$,, delimiter

R 20 relation name

R 1 1$1 delimiter

R 20 attribute name

R 1 ,,$,, delimiter

R 20 domain name

R 1 ,,$,, delimiter

R 3 attribute length

R 1 "1$1' delimiter

R 1 attribute type

R 1 .$, delimiter

R 1 key member

R 1 .$,, delimiter

o 20 attribute name

0 1 ,,$,, delimiter

0 20 domain name

0 1 ,,$,, delimiter

0 3 attribute length

0 1 ,,$,, delimiter

0 1 attribute type

o 1 ,,$,, delimiter

0 1 key member

0 1 ,'$,, delimiter

R 1 "%" delimiter

R 1 "#,, delimiter

193

10) The DESTROY and PRINT operations format.

field state max byte size field description

R 7 "DESTROY,PRINT" cmd
R 1 "1$"1 delimiter
R 20 relation name
R 1 "$" delimiter
R 1 "1#"1 delimiter

194

11) The UNION operation format.

field state max byte size field description

R 5 "UNION" command
R 1 "$" delimiter
R 20 relation name
R 1 1$" delimiter
R 20 relation name
R 1 1$" delimiter
R 20 relation name
R 1 "$" delimiter
R 1 "#" delimiter

195

Appendix C

BCP System Table Formats

The twelve BCP system tables, the four interprocessor

communication message buffers, and all other work variables

are defined in this appendix. This data is taken directly

from the UCSD PASCAL computer program listing for the BCP

subsystem software. All data entries are described by

comments located to the right hand side of the listing.

196

(*$G+*)
(*$5*)

AUTHOR : CAPT ROBERT W. FONDEN
CLASS : GCS-81D
DATE : 02 DECEMBER 1981

UNIT COMMON; (* SEGMENT NUMBER 10 *)

INTERFACE

CONST

RELOPRSIZE = 197; (* REL OPERATION SIZE
MSGSIZE = 1000; (* HOST MESSAGE SIZE
PAGESIZE = 4096; (* PAGE SIZE

HOSTIN = 07; (* HOST I UNITNUMBER VAL *)
HOSTOT = 08; (* HOST 0 UNITNUMBER VAL *)

QPO1IN = 03; (* QP01 I UNITNUMBER VAL *)
QPO2IN = 06; (* QP02 I UNITNUMBER VAL *)

QPO1OT = 09; (* QP01 0 UNITNUMBER VAL *)
QPO2OT = 10; (* QP02 0 UNITNUMBER VAL *)

IMOIIN = 11; (* IMM01 I UNITNUMBER VAL *)
IMOOT = 12; (* IMM01 0 UNITNUMBER VAL *)

TYPE

STG02 = STRING[02];
STG03 = STRING[03];
STG04 = STRING[041;
STG20 = STRING[20);
STG80 = STRING[80];

STRING02 = PACKED ARRAY [l..02] OF CHAR;
STRINGO3 = PACKED ARRAY [l..03] OF CHAR;
STRING04 = PACKED ARRAY [l..04] OF CHAR;
STRING05 = PACKED ARRAY [l..051] OF CHAR;
STRING06 = PACKED ARRAY [1..061 OF CHAR;
STRING1O = PACKED ARRAY [I..10] OF CHAR;
STRING14 PACKED ARRAY [l..14] OF CHAR;
STRING16 PACKED ARRAY [1..16] OF CHAR;
STRING20 = PACKED ARRAY [l..20) OF CHAR;
STRING35 = PACKED ARRAY [1..351 OF CHAR;
STRING55 = PACKED ARRAY 11..55] OF CHAR;
STRING115 = PACKED ARRAY [1..115] OF CHAR;
STRINGOPER = PACKED ARRAY [I..RELOPRSIZE] OF CHAR;
STRINGMSSG = PACKED ARRAY [I..MSGSIZE] OF CHAR;
STRINGPAGE = PACKED ARRAY [I..PAGESIZE] OF CHAR;

197

DOMNAMEENTRY = RECORD (* DOMAIN NAME TABLE
NEXTDOMNAME : ^DOMNAMEENTRY;
DOMNAME : STRING20; (** DOMAIN NAME
ATTMBRENTRY = RECORD (* DOMAIN'S ATTRIBUTE TABLE")

NEXTATTMBR : ^ATTMBRENTRY;
DOMATTMBRPNTR : ^ATTNAMEENTRY; (** POINTER TO ATTNAMEENTRY *)
END;

END;

ATTNAMEENTRY = RECORD (* ATTRIBUTE NAME TABLE *)
NEXTATTNAME : ^ATTNAMEENTRY;
ATTNAME : STRING20; (* ATTRIBUTE NAME
ATTLENGTH STRING03; (* ATTRIBUTE BYTE LENGTH *)
ATTTYPER CHAR; (* ATTRIBUTE TYPE
DOMPNTR ^DOMNAMEENTRY; (** POINTER TO DOMNAMEENTRY *)
END;

RATTENTRY = RECORD (* RELATION ATTRIBUTE TAB *)
NEXTRATT : -RATTENTRY;
RATTNAME : STRING20; (* ATTRIBUTE NAME
BYTEOFF : STRING03; (* BYTE OFFSET
RATTTYPE : CHAR; (* ATTRIBUTE TYPE
RATTLEN : STRING03; (* ATTRIBUTE BYTE LENGTH *)
KEYMBR : CHAR; (* KEY MEMBER INDICATOR)
END;

PAGEENTRY = RECORD (* RELATION PAGE TABLE
NEXTPAGE : ^PAGEENTRY;
PAGENBR : STRING03; (* RELATION PAGE NUMBER *)
PAGEADDR : STRING16; (* RELATION PAGE ADDRESS *)
END;

RELENTRY = RECORD (* DB RELATION TABLE
NEXTREL : ^RELENTRY;
RELNAME : STRING20; (* RELATION NAME
RELCODE : STRINGO3;. (* RELATION CODE
ATPNTR : ^RATTENTRY; (* ATTRIBUTE TABLE POINTER *)
PTPNTR : ^PAGEENTRY; C* PAGE TABLE POINTER
LOCKIND : CHAR; (* RELATION LOCK INDICATOR *)
LOCKOWNER STRING05; C' LOCK OWNER -MSGNBM-
TUPLELEN STRING03; C* BYTE LENGTH OF TUPLES *)
ATTNBR : STRING02; (' NUMBER OF ATTRIBUTES *)
END;

IMMENTRY = RECORD (* A OP'S IMM TABLE
NEXTIMM : ^IMMENTRY;
IMMADDR : STRING03; (* PORT ADDRESS OF IMM
IRELNAME : STRING20; C* RELATION NAME PAGED
END;

QPENTRY = RECORD C* QP TABLE
NEXTQP : ̂ QPENTRY;

198

(f QP ID NUMBER
*)

QPNMBR : STRING02; (* STATE OF QP

QPSTATE : CHAR; IMM TABLE POINTER
IMMPNTR : 'IMMENTRY;

END;

QPKTOPERENTRY = RECORD (t QPKT OPERATION STEPS f)

NEXTQPKTOPER : AQPKTOPERENTRY OPERATION CODE
OPCODE : STRING03; (SET OF OPERANDS *)

OPERANDS : STRINGOPER;
END;END(

QPKT WAIT QUEUE *)
QPWQENTRY = RECORD

NEXTQPWQ : ^QPWQENTRY; (f IN EXECUTION INDICTR *)

INEX : CHAR; (* QPKT MESSAGE NUMBER

QPKTMSGNBR STRING05; (* QPKT HOST IDENT *)

QPKTHOSTID STRING06; (* QPKT PROGRAM ID

QPKTPGMID STRING06; QPKT CRT ID
QPKTCRTID STRING06; (f QPKT PRIORITY

QPKTPRI : CHAR; (

QPKTOPERPTR : AQPKTOPERENTRY; (f QPKT OPERATIONS TAB PTR *)

END;END(QUERY OPER STATE TABLE *)
QOSTENTRY = RECORD

NEXTQOST : QOSTENTRY; (f RELATION NAME *)

QOSTRELNAME : STRING20; POINTER TO REL ENTRY *)

RELPNTR : 'RELENTRY; (f RELATION PAGE CURRENCY f)

QOSTPAGECUR : STRING03; COUNT TOTAL

QOSTCNT : INTEGER; TOTAL VALUE
QOSTTOT : INTEGER; (MINIMUM VALUE

QOSTMIN : INTEGER; (f MINIMUM VALUE *)

QOSTMAX : INTEGER;

END; (f QPKT EXECUTE LIST *)

QPELENTRY - RECORD
NEXTQPEL : ^QPELENTRY; (* QPWQ ENTRY POINTER f)

QpWQPNTR : -QFWQENTRY; (f QPKT MESSAGE NUMBER *)
QPELMSGNBR - STRING05; OPTIMUM ALLDC OF QP'S *)

OPTALLOC : INTEGER; CURRENT ALLDC OF QP'S

CURALLoc : INTEGER; RQoR POINTER ft)

QOSTPNTR : ^QOSTENTRY; (* QfKT PROC COMPLETED IND *)

CMPLTDIND CHAR; RELATION HOLDING ANSWER

FNLRELNAME : STRING20;

END; TRANSMIT QUEUE FOR BCP

XMITQENTRY = RECORD

NEXTXMITQ : -XmITQENTRY ;(f MESSAGE NUMBER *)

XMSGNBR : STRING05; HOST ID NUMBER
XHOSTID : STRING06; (PROGRAM ID NUMBER *)

XPGMID : STRING06; (f CRT ID NUMBER

XCRTID : STRING06; (RIORITY OF MESSAGE)

XPRI : CHAR; (RELATION ANER NAME

XFNLRELNAJME : STRING20; (f PAE TRANSFER COUNTER)

XCOUNT : INTEGER;

END;

199

VAR

BPDOMNAM1'BL : DOMNAMEENTRY; (MBAE POINTER OF DOMNAMTBL *
BPATTNAIrBL : ATTNAMEENTRY; (*BASE POINTER OF ATTNAMTBL '
BPRELTBL : RELENTRY; ('BASE POINTER OF RELTBL
BPQP'TBL : QPENTRY; (~BASE POINTER OF QPTBL
BPQPWQ : QPWQENTRY; ('BASE POINTER OF QPWQ
BPQPEL : QPELENTRY; (~BASE POINTER OF QPEL
BPXMITQ : XMITQENTRY; (~BASE POINTER OF XMITQ

TBPDOMNAMTBL : DOHNAMEENTRY; ('TBAS E POINTER OF DOMNAMTBL '
TBPATTNAMTBL : ATTNAMEENTRY; (*TBASE POINTER OF ATTNAMTBL)
TBPRELTBL : ̂REL.ENTRY; (*TBASE POINTER OF RELTBL

CPODNT : DOMNAMEENTRY;
CPlDNT : DOMNAMEENTRY;
CP2DNT : DOMNAMEENTRY; (WORK POINTERS FOR DOMNAHETBL *

CPOAME : ATTMBRENTRY;
CPlAME : ATTH1BRENTRY;
CP2AME : ATTh1BRENTRY; (~WORK POINTERS FOR ATTMBRTBL ~

CPOANT : ATTNAMEENTRY;
CPlANT : ATTNAMEENTRY;
CP2ANT : ATTNAMEENTRY; (*WORK POINTERS FOR ATTNAMTBL

CPORAT : RATTENTRY;
CP1 RAT : RATTENTRY;
CP2RAT : RATTENTRY; (~WORK POINTERS FOR RATTTBL)

CPOPT : PAGEENTRY;
CP1 PT : PAGEENTRY;
CP2PT : PAGEENTRY; (*WORK POINTERS FOR PAGTBL

CPORT : RELENTRY;
CPlRT : RELENTRY;
CP2RT : RELENTRY; ('WORK POINTERS FOR RELTBL
CP3RT : RELENTRY;
CPJ4RT : RELENTRY;

CPOIT : IMMENTRY;
CP1IT : IMMENTRY;
CP21T : IMMENTRY; (~WORK POINTERS FOR IHMTBL

CPOQT : QPENTRY;
CP1QT : QPENTRY;
CP2QT : QPENTRY; ('WORK POINTERS FOR QPTBL

CPOQPT : QPKTOPERENTRY;
CP1QPT : ^QPKTOPERENTRY;

200

CP2QPT ^'QPKT0PERENTRY; ('WORK POINTERS FOR QPKTOPERLZT*)

CPoQPWQ ^ QPWQENTRY;
CP1QPWQ ^QPWQENTRY;
CP2QPWQ ^QPWQENTRY; ~ 'WORK POINTERS FOR QPWQ

CPOQOST '^QOSTENTRY;
CPIQOST ^QOSTENTRY;
CP2QOST : QOSTENTRY; (WORK POINTERS FOR QOST

CPOQPEL : QPELENTRY;
CPlQPEL AQPELENTRY;
CP2QPEL AQPELENTRY; (*WORK POINTERS FOR QPEL

CPOXMITQ AXMITQENTRY;
Cp1XNITQ AXMlTQENTRY;
CP2XMITQ A XMITQENTRY; (*WORK POINTERS FOR XMITQ

(FOR MESSAGES GOING FROM QP'S TO BCP

QBMSGCODE CHAR; (*A C D G N U A ADD-PAGE REQUEST *
QBQPNMBR :STRING02; (~# # # # # # C PROC CMPLT RESPONSE ~
QBMSGNBR :STRINGO5; (# # # # # # D DESTROY REL REQUEST ~
QBRELNAAE :STRING2O; (*# # #' # # G GET-PAGE REQUEST *
QBIMMLOC STRINGO3; (# # # N NEXT-PAGE REQUEST *
QBPAGEt4BR :STRINGO3; #*i~ U UPDATE-PAGE REQUEST *
QBCOUNT : STRING2O; #f
QBTOTAL : STRING2O;#
QBMIN :STRING20; #1
QBMAX :S RING20;#
QBLOCK :. CE{A; #f #f4

QBBUFFER :STRING115;

QB01BUFFER :STRING115;
QB02BUFFER t STRINGI 15;
QB03BUFFER :STRING115;
QB0J4BUFFER :STRINGI 15;
Q805BUFFER :STRINGi 15;
QB06BUFFER :STRINGi 15;
QB07BUFFER : STRINGlI5;
QB88UFFER :STRI:NGt 15;

('FOR MESSAGES GOING FROM BC? TO QP'S. (ANSWERING QP MESSAGES ONLY))

BQANSCODE:CHIAR; (A D L N PUA =AGEHAS BEEN ADDED) *
BRLNAMZi STRtI4G2O; # I D =RELATION IS DESTROYED)
BPAGENBR :STRINGO3; (# I L =REL LOCKED, TRY LATER4)
BQIMMADDR :STRINGO3; # N =ARE NO MORE PAGES

201

(* P = HERE IS ANOTHER PAGE)
U = PAGE WAS RERITTEN *)

BQBUFFERA : STRING35;

BQBUFERB : STRINGMSSG;

C* FOR MESSAGES GOING BETWEEN THE BCP AND THE HOST

HBBUFFER : STRINGMSSG; C' HOST TO BCP MESSAGE BUFFER
BHBUFFER : STRINGMSSG; (* BCP TO HOST MESSAGE BUFFER

C* FILE ID'S AND TITLE NAMES FOR THE FILES CONTAINING SYSTEM TABLES *)

PAGEFILE : TEXT; C' FILE-ID TO REFERENCE PAGE FILES *)
TBLFILE : TEXT; (* FILE-ID TO REFERENCE TABLE FILES *)

ATTNAMTBL : STG20; (* DBNN:ATTNAMTBL.TEXT
RELTBL : STG20; (* DBNN:RELTBL.TEXT
RATTTBLS STG20; (DBNN: RATTTBLS. TEXT
PAGTBLS STG20; (DBNN:PAGTBLS.TEXT
TRFILE STG20; C' DBNN:TRIFILE.TEXT

(* MISCALANEOUS STRING VARIABLES

CH : CHAR; (* FOR CONSOLE BYTE/STRING INPUT
BCPRESP : STG20; (* FUNCTION ANSWER TO QUERY RQST
DOLLAR : CHAR; C* A '$' DELIMITER
HOLDATT : STRING20; (' ATTRIBUTE NAME HOLD BUFFER
HOLDPAGE : STRING03; (* RELATION PAGE HOLD BUFFER
HOLDREL : STRING20; C* RELATION NAME HOLD BUFFER
HOSTMSGLEN : STRING05; C* BYTE LENGTH OF NEXT HOST MESSAGE *)
KEYBRD : STG80; C* OPERATOR CONSOLE INPUT
NQPS : STG02; (* NUMBER OF QP'S CONFIGURED FOR RUN ')
PAGEBUFFER : STRINGPAGE; (* PAGE STAGING BUFFER TO IMM
PAGETOSTAGE : STG20; (* PAGE ADDRESS OF PAGE TO STAGE NEXT*)
PAGETOWRITE : STG20; (* PAGE ADDRESS OF PAGE TO WRITE BACK*)
PGM : STRING55; C' ALGORITHM FOR SERVICE SELECTION ')
QPVALUE : STRING16; (* QP CONFIGURATION STARTUP TABLE *)
RELVOLlID : STG04; C' VOLUME 1 HOLDING RELATION FILES ')
RELVOL2ID : STG04; (* VOLUME 2 HOLDING RELATION FILES *)
RSPNS : CHAR; C' RESPONSE INDICATOR BETWEEN PGMS ')
VOLTBLS : STG04; C' VOLUME # HOLDING DB SYSTEM TABLES ')
VOPCODE : STRING03; (* QUERY STEP OP-CODE TEMP-BUFFER *)

C' MISCALANEOUS INTEGER VARIABLES

202

CLOCK : INTEGER; (* PGM COUNTER
COUNT : INTEGER; (UTILITY COUNTER
DBSAVE INTEGER; (1 = DB SAVE HAS BEEN REQUESTED *)
DISP : INTEGER; (* BYTE DISPLACEMENT COUNT
ER : INTEGER; (* STRING-INTEGER;ERROR INDICATOR *)
FF : INTEGER; C* FIRST BYTE POSITION POINTER *)
FOUNDIT INTEGER; (* INDICATE IF FILE IS ON-LINE OR NOT)
HBYTEPOS INTEGER; (* INDEX USED FOR SCANNING HBBUFFER *)
HOLDIORSLT INTEGER; (* SAVE OFF THE IORESULT OF I/O CALL ')
HOLDRQSTIND INTEGER; (* FOR DBSAVE / WRAPUP REQUESTS *)
I,J,K,L,M,N INTEGER; (* UTILITY COUNTERS *)
II,JJ,KK,LL,MM : INTEGER; C* UTILITY COUNTERS *)
IMMNBR : INTEGER; C* IMM TO RECIEVE STAGED REL PAGE ')
LAST : INTEGER; C* LAST QP SERVICED
MAX : INTEGER; C* MAXIMUM ALLOWABLE STRING LENGTH ')
NOTT : INTEGER; (* A STATUS INDICATOR
NQPSVALUE : INTEGER; C' NUMBER OF QP'S CONFIGURED TO PROC *)
NVOLS : INTEGER; C' NBR OF VOL'S HOLDING DB RELATIONS *)
PROCIDLE : INTEGER; (' PROC IDLE - FOR DBSAVE / WRAPUP *)
QPCHOSEN : INTEGER; C' QP SELECTED TO BE SERVICED NEXT *)
QFWQFULL : INTEGER; (*1 = QPWQ IS PRESENTLY FULL
RELRQSTIND : INTEGER; (* FOR DBSAVE / WRAPUP RESPONSES
RESULT : INTEGER; (' DECISION INDICATOR
RESPONSE : INTEGER; C* DECISION INDICATOR
RR : INTEGER; (* LAST BYTE (REAR) BYTE POINTER
WRAPUP : INTEGER; 1' 1 = WRAPUP HAS BEEN REQUESTED

(--)

END. (* UNIT COMMON [SEGMENT NUMBER 10] *)

203

Appendix D

BCP System Data Base File Formats

The following six files are used to support this

system.

1) domain name file

2) attribute name file

3) relations file

4) relation's attributes file

5) relation's pages file

6) relation's page files (pages of tuples)

The specific formats for each of these files are

defined in the following paragraphs. These files all store

their data in UCSD text format. Note that the first four

files also contain carriage-return (<cr>) delimiters

between each of the records. This is to enable both easy

inspection of these files using the UCSD PASCAL editor, as

well as easy modification, using the UCSD PASCAL editor,

for testing purposes.

(1) Domain Name File Record Format.

01 - 20 domain name

21 - 40 attribute name

Example File:

204

[BOFJ

NAME STUDENTNAME <CR>

NAME FACULTYNAME <CR>

SSAN STUDENTSSAN (CR>

SSAN FACULTYSSAN (CR>

SSAN EDPLANSSAN <CR>

GRADE EDPLANGRADE <CR>

COURSE EDPLANCOURSE <CR>

QUARTER EDPLANQUARTER <CR>

PROGRAM STUDENTPROGRAM <CR>

EDCODE STUDENTEDCODE <CR>

DEPT FACULTYDEPT <CR>

[EOF]

(2) Attribute Name File Record Format.

01 - 20 attribute name

21 - 23 byte length

2J4 attribute type

25 - 414 domain name

45 <Cr>

Example File:

£BOFI

STUDENTNAME 02OCNAME <CR>

STUDENTSSAN 009CSSAN <CR>

STUDENTPROGRAM 006CPROGRAM <CR>

205

STUDENTEDCODE O04CEDCODE <CR>

FACULTYNAME O09CNAME <CR>

FACULTYSSAN O09CSSAN <CR>

FACULTYDEPT O03CDEPT <CR>

EDPLANSSAN O09CSSAN <CR>

EDPLANCOURSE O05CCOURSE <CR>

EDPLANQUARTER O04CQUARTER <CR>

EDPLANGRADE O02CGRADE <CR>

[EOF]

(3) Relations File Record Format.

01 - 20 relation name

21 - 23 relation code

24 - 26 tuple byte length

27 - 28 number of attributes

29 <CR>

Example File:

[BOF]

STUDENT 00103904<CR>

FACULTY 00203203<CR>

EDPLAN 00302004<CR>

[EOF]

(4) Relation's Attribute File Record Format.

206

01 - 20 attribute name

21 - 23 byte offset in tuple

24 attribute type

25 - 27 byte length of attribute

28 key membership indicator

29 <CR>

Example File:

[BOF]

STUDENTNAME OOOC02ON<CR>

STUDENTSSAN 021C009Y(CR>

STUDENTPROGRAM 030CO06N<CR>

STUDENTEDGODE 036C004N(CR>

FACULTYNAME OOOC020N<CR>

FACULTYSSAN 021CO09Y(CR>

FACULTYDEPT 030CO03N<CR>

EDPLANSSAN 0OOCOO9Y(CR>

EDPLANCOURSE 009C005N<CR>

EDPLANQUARTER 01'4CO04LN<CR>

EDPLANGRADE 018C002N<CR>

CEOFI

Note that a 1$1 delimiter is used to group a set of

attributes defined for each relation. Each set of

207

attributes are sequenced in accordance with the order of

the relations stored in the relation file.

(5) Relation's Page File Record Format.

01 - 03 page number

04 - 07 volume-id

08 I''

09 - 19 page file address name

09 - 11 relation code

12 - 14 page number

15 - 19 '.text'

20 <CR>

Example File:

[BOF]

OO1DBV1:001001.TEXT<CR>

O02DBV1:001002.TEXT<CR>

O03DBV1:001003.TEXT<CR>

$<CR>

OO1DBV1:002001.TEXT<CR>

O02DBV1:002002.TEXT<CR>

$<CR>

OO1DBV2:003001.TEXT<CR>

O02DBV2:003002.TEXT<CR>

208

003DBV2:003003.TEXT<CR>

003DBV1:003004.TEXT<CR>

$<CR>

[EOF]

Note that a '$' delimiter is used to group a set of

pages existing for each relation. Each set of pages are

sequenced in accordance with the order of the relations

stored in the relation file.

(6) Relation's Page Files Record Format.

0001 '/' BOP delimiter

0002 - NNNN relation's tuples

NNNN + 1 '\' EOP delimiter

NNNN + 2 - MMMM unused space in page

where MMMM = the fixed byte size of the pages.

209

Appendix E

Inter-processor Architectural Specifications

Figure 26 portrays the inter-processor architecture

used to accomplish the testing for stage one of this

development effort. Five processors were used to

accomplish the testing for developing the BCP's software.

The acronyms DLV-11, DLV-11J, DUALPORT, and DRV- 11J

respectively identify a single port 38.4 Kbaud serial line

channel card, a quad port 38.4 Kbaud serial linp channel

card, a dual port 3 8.4 Kbaud serial line channel with 16

Kbyte RAM card, and a single port parallel line

channel card. Fifty six Kbytes of RAM are resident on

each of the five systems. A CRT is assigned to each

processor subsystem for supporting the subsystem

development. The finalized system will only require a CRT

attached to the BCP.

210

__7E,

E-4 -4 4.

0 4)0

00) c P4 -4

C'' cn4 >- ' u

-n c'. I-n

V3V

0

0 E0

PL4 4) ~~ -

c- C> I I
I I=I-

-4

0 j

211

Appendix F

Channel Link Software Specifications

This appendix contains all the necessary information

to construct channel link communication software drivers

and incorporate them into the UCSD PASCAL operating system

software package known as SYSTEM.PDP11.

To add a new channel link communication software

driver, several decisions must first be made. First, a UCSD

PASCAL UNITNUMBER value must be selected and then a channel

number must be selected for the UNITNUMBER to be assigned

to. For example, UNITNUMBER 7 and channel 0 were selected

for the first driver, and UNITNUMBER 8 and channel 2

were selected for the second driver. Since the serial

driver software used in this implementation does not perform

concurrent bidirectional transmission, the inter-processor

architecture must next be considered. If a connected pair

of processors have a master - slave relationship, then only

a single software driver is needed to support both input

and output to/from the other processor, but if both input

and output to/from the other processor can occur

concurrently at any time, then a set of drivers and

channel link lines will be required. Once the channel

number(s) have been selected, the hardware addresses must

next be determined.

The next step is to modify the source code of each

driver to be used, specifically, the UNITNUMBER, and the

212

channel hardware addresses. If multiple drivers are to be

incorporated into the operating system, then each driver

must also have its own unique name . Once changes have

been made, using the RT-11 operating system and its

editor, the drivers must next be re-assembled.

The command to re-assemble a software driver is

.R MACRO

* OBJFIL[,LSTFILI:[OPTIONS,]MACROS,SRCFIL

For example,

.R MACRO

* DLCHO7=ALL1 ,MACROS,DLCH7

5

The OPTIONS file may set any or all of several

assembly-time options to customize the resulting object to

a particular hardware configuration. If no OPTIONS file is

given, the resulting .OBJ file will run on any PDP/LSI 11

model computer. The option file may include definitions of

the following symbols:

EIS - Causes code to be generated utilizing MUL,

ASH, DIV, ASHC, and SOB instructions.

LSI - Causes code for MTPS, MFPS, and SOB

213

instructions.

FPI - Causes code for FADD, FSUB, FMUL, and FDIV

instructions. (These are 11/40 type floating

point instructions; the 11/45 type instructions

are not supported.)

TERAK - Defines all of the above.

FPI should not be defined unless EIS is defined. For

LSI/11s with EISFIS chip, define all three. For LSI/11s

without the EISFIS chip, define only LSI. For 11/40s with

EIS, define only EIS. For 11/10s, do not define any of

the options. For this implementation, ALL1.MAC contains

the entries 'EIS=O<CR> LSI=1<CR> FPI=O<CR>'.

Once the new channel link communication software

driver(s) have been re-assembled, the next step is to build

a new UCSD PASCAL operating system. The following RT-11ish

files must be online when the new operating system is to be

created (for this particular implementation).

MACROS.AAC Global definitions and macros for the

interpreter sources. These should be

assembled in front of all sources,

except the boot loaders.

MAINOP.MAC Interpreter section for most P-machine

instructions

PROCOP.MAC Interpreter section for procedure call

operators run-time support subroutines.

214

IOTRAP.MAC SYSCOM and trap-vector ASECT and

console device driver.

RX.MAC DEC floppy driver.

LP.MAC LP11 line printer driver.

SOFTFP.OBJ Floating point package for systems

without FPI instruction set.

DLnn.MAC DL11 port channel driver(s).

RXBOOT.MAC Bootloader for RX01 compatible drives.

The remaining files are optional files for other

micro-computer architectures.

QX.MAC Driver for REMEX floppies on TERAK 8510

systems.

RK.MAC RK05 disk driver.

TK.MAC 8510a screen emulator.

RKBOOT.MAC Bootloader for RK05 compatible drives.

QXBOOT.MAC Bootloader for QX type REMEX drives.

HARDFP.MAC Floating point package for systems with

FPI instruction set.

DUMYFP.MAC A dummy floating point package.

The linking instructions to build a new UCSD PASCAL

operating system are as follows.

.R LINK

*SYSPDP[,MAP]=IOTRAP,MAINOP,PROCOP,RX,LP/C/B:O

215

*DLCHO7,DLCH28,SOFTFP

The first three files must be in the above order.

Drivers may be in any order. The floating point

information should be last.

Now a new UCSD PASCAL operating system file, called

SYSPDP.SAV has been created. The next step is to transfer

this file from the RT-11 floppy it was created on, over to

a UCSD PASCAL floppy. To accomplish this transfer, a

seperate floppy, referred to as the 'transfer floppy', must

be used. This floppy should be 'ZEROED' using the PASCAL

operating system before the transfer procedure is

accomplished. After zeroing the transfer floppy, the

following sequence should be accomplished in order.

(1) Under the RT-11 operating system, transfer the

newly created SYSPDP.SAV file from the floppy it was

created on, over to the transfer floppy.

(2) Request a .DIR/BLOCKS list of the transfer floppy.

Record on paper the starting block of where SYSPDP.SAV

resides and also the total block size of the file.

(3) Remove the RT-11 system floppy and insert a UCSD

PASCAL system floppy. Reboot the system.

(4) Enter the command 'MAKE #5:RT11.TEXT[8]. Since

the directory index files for the RT-11 and the UCSD PASCAL

operating systems reside in different areas of a floppy, a

pascal file must be 'created' over the area where the RT-11

directory resides in order to ensure that the UCSD PASCAL

216

operating system does not write over it.

(5) Enter the command 'MAKE #5:SYSTEM.PDP-11[nn] where

nn equals the recorded size of the SYSPDP.SAV file. This

enables the UCSD PASCAL operating system to access the file

SYSPDP.SAV created by the RT-11 operating system.

Steps five and six produce a transfer floppy

containing dual directories, each having pointers to the

same newly created operating system.

(6) Rename the file SYSTEM.PDP11 on the UCSD PASCAL

system boot floppy to S.PDP11.

(7) Transfer the file SYSTEM.PDP11 from the transfer

floppy over to the system boot floppy.

(8) Reboot the system. The LSI-11 system is now re-

configured containing the serial port channel drivers.

Three PASCAL test programs have been included in this

appendix. These programs were used to test the new channel

drivers.

The first program was used to test the concurrency of

two channel drivers performing data transmission to

seperate CRTs connected to channels 0 and 2. The

successful test of concurrency in data transmission was

accomplished at 19.2 Kbaud using UNITWRITE instructions.

The remaining two programs were used to test

communication between two LSI-11s connected via a single

serial channel link. This test consisted of a message

transfer being made back and forth (ping-pong fashion) for

100 iterations. One program first issued a UNITREAD to

217

channel 2 UNITNUMBER 8 while the other program first issued

a UNITWRITE to channel 0 UNITNUMBER 7 (link was from

channel 2 of machine A to channel 0 of machine B). Each

time a message was recieved it was displayed on the

machines console. Then a response message was sent out.

218

PROGRAM TEST; (* TO DRIVE DATA THROUGH 2 CHANNELS *)
TYPE

DATASTR = STRING[40];
SENDBUF = PACKED ARRAY [l..1920] OF CHAR;

VAR
I, J, UNITNBR2, UNITNBR7, UNITNBR8 : INTEGER;
MESSAGE1,MESSAGE2,MESSAGE3 : SENDBUF;
MSSG01 ,MSSG02 : DATASTR;

BEGIN
UNITNBR2 := 2; (* CONSOLE *)
UNITNBR7 := 7; (* CHANNEL 0 *)
UNITNBR8 8; (* CHANNEL 2 *)

MSSGO1 'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 ';
MSSG02 '0123456789 ABCDEFGHIJKLMNOPQRSTUVWXYZ';

FOR I := 0 TO 47 DO
BEGIN
FOR J := 1 TO 40 DO

BEGIN
MESSAGEI [I * 40 + J1 := MSSGO1 [J];
MESSAGE2 [I * 40 + J] := MSSG02 IJ];

END;
END;

UNITWRITE (UNITNBR7,MESSAGE1,1920,0,1);

UNITWRITE (UNITNBR8,MESSAGE2,1920,0,1);

WRITELN;
WRITELN ('AS YOU CAN SEE, THIS MESSAGE HITS THE CONSOLE ');
WRITELN ('AT THE SAME TIME THE BUFFERED DATA IS SENT TO ');
WRITELN ('THE CRTS CONNECTED TO UNITNUMBERS 7(0) AND 8(2)');
WRITELN;
WRITELN ('NOW, TYPE IN 20 CHARACTERS (CURSER WILL NOT MOVE)');
WRITELN;

UNITREAD (UNITNBR2,MESSAGE3,20,O,1);
UNITWAIT (UNITNBR2);

WRITELN ('THIS IS THE MESSAGE RECIEVED USING A UNITREAD TO');
WRITELN ('THE CONSOLE:');
WRITELN;
WRITELN (MESSAGE3:20);

WRITELN;
WRITELN ('TESTING IS NOW ADJOURNED! 1);

END.

219

PROGRAM TESTA;
TYPE

')ATASTR = STRING[401;
SENDBUF = PACKED ARRAY [I..40] OF CHAR;

VAR
BUFFOOI,BUFFO02 : SENDBUF;
MSSGAA,MSSGBB : DATASTR;
RMOT : DATASTR;
OUTOUT : FILE;
I,J : INTEGER;

BEGIN

MSSGAA 'THIS DATA IS COMING FROM SYSTEM A A A A "
MSSGBB 'THIS DATA IS COMING FROM SYSTEM B B B B ';
RMOT := 'REMOUT:';

FOR J := 1 TO 40 DO
BEGIN

BUFFO01 [J] MSSGAA [J];
BUFFO02 [J] := MSSGBB [J];

END;

WRITELN ('START WITH A UNITREAD TO UNITNUMBER 8 ');
RESET (OUTOUT,RMOT);

FOR J := 1 TO 100 DO
BEGIN

UNITCLEAR (8);
FOR I := 1 TO 40 DO

BUFFO02[I] := '1;

UNITREAD (8,BUFFO02,40,OI);
WHILE UNITBUSY (8) DO

BEGIN
I := I+I;
I :=I-I;

END;
WRITELN (J:4,' ',BUFFO02);

UNITCLEAR (8);
UNITWRITE (8,BUFFO01,40,O,1);
WHILE UNITBUSY (8) DO

BEGIN
I := iI
I 1-1;

END;
END;

END.

220

PROGRAM TESTB;
TYPE DATASTR = STRING[40];

SENDBUF = PACKED ARRAY (i..40] OF CHAR;
VAR

NDU;
BUFFO01,BUFFO02 SENDBUF;

MSSGAA,MSSGBB
DATASTR;

RMOT DATASTR;
RMOT FILE;
OUTOUT INTEGER;I,J

BEGIN

MSSGAA := 'THIS DATA IS COMING FROM SYSTEM A A
A A ';

MSSGBB 'THIS DATA IS COMING FROM SYSTEM
B B B B I;

RMOT 'REMOUT:';

FOR J I TO 40 DO
BEGIN

BUFFO01 [J] := MSSGAA [J3;

BUFFO02 [J] MSSGBB [J];

END;

WRITELN ('START WITH A UNITWRITE TO
UNITNUMBER 8 ');

RESET (OUTOUT, RMOT);

FOR J := I TO 100 DO
BEGIN

UNITCLEAR (8);

UNITWRITE (8,BUFFO02,40,O,I);
WHILE UNITBUS? (8) DO

BEGIN
I := 1+I;
I := I-I;

END;

UNITCLEAR (8);
FOR I := 1 TO 40 DO

BUFFO01[I] := ";

UNITREAD (8,BUFFO01,40,0,I);
WHILE UNITBUSY (8) DO

BEGIN
I : +I;
I I-I;

END;
WRITELN (J:4,' ',BUFFO01);

END;
END.

221

Appendix G

Host Structure Chart Documentation

This appendix consists of two sections documenting the

modular design of the host processor's test software. The

first section is a list identifying all the modules in the

software design. The '*' that appears to the right of the

module's title identifys that module as a 'common' module

called by more that one calling module. The second section

is a set of structure charts showing the interrelated

structure of the modules within the subsystem. Note that

the filled-in bottom right corner of the module box

indicates it is a 'common' module. The module numbers in

each section are used as a cross-reference between both

documentation sections. The program listings for this

subsystem are contained in Volume II of this thesis.

HOST Module List

2.0 Host

2.1 Perform Initial Sign-on to BCP

2.1.1 Clear the Host-to-BCP Message Buffer *

2.1.2 Clear the BCP-to-Host Message Buffer *

2.1.3 Build a Message Header *

2.1.4 Issue a UNITREAD to the BCP *

2.2 Request Command from the Host's Console

2.3 Process the BCP Message Received

222

2.4 Process the Host Command Received

2.4.1 Send Host Request Message to BCP

2.4.1.1 Increment the Message Number Count

2.4.1.2 Issue a UNITWRITE to the BCP *

BCP Structure Charts

(Charts begin on following page)

223

I ! I

cr

0 E-4

o i

0

P-1

224

,r C-) . , , . .= =

225

I

226

VMI C4

227

CO C

C22

C1)

cr
o4) n-

4w

N

-..---- cq

0 -4

P, ¢C4O 4-

Ni

4) tq-$ 4

229

II

4) b~c c

230

Appendix H

QP Structure Chart Documentation

This appendix consists of two sections documenting the

modular design of the query processor's software. The

first section is a list identifying all the modules in the

software design. The '*' that appears to the right of the

module's title identifys that module as a 'common' module

called by more that one calling module. The second section

is a set of structure charts: showing the interrelated

structure of the modules within the subsystem. Note that

the filled-in bottom right corner of the module box

indicates it is a 'common' module. The module numbers in

each section are used as a cross-reference between both

documentation sections.

Of the twelve relational algebra operations that the

query processor is designed to process, only the 'select'

(3.4.3.1) function module has received further detailed

definition; sufficient enough for this stage of the overall

development effort.

QP Module List

3.0 QP

3.1 Initialize

3.2 Prepare to Accept a Query Packet Message

231

3.3 Accept the Query Packet Message

3.4 Process the Query Packet Message Request

3.4.1 Initialize subsystem tables

3.4.2 Extract Next Query Operation Step

3.4.3 Process the Query Operation Step

3.4.3.1 'Select' Operation Processing

3.4.3.1.1 Decompose the 'Select' Operation

3.4.3.1.2 Build the 'Get Next Page' Message

3.4.3.1.3 Send the Message to the BCP

3.4.3.1.4 Prepare to Accept BCP Message *

3.4.3.1.5 Read the Response Message *

3.4.3.1.6 Switch to specified IMM address *

3.4.3.1.7 Process the Relation Page

3.4.3.1.7.1 Read a Tuple

3.4.3.1.7.2 Perform 'Select' Comparison

3.4.3.1.7.3 Write Tuple into IMM memory *

3.4.3.1.7.4 Build an 'Add Page' Message *

3.4.3.2 'Project' Operation Processing

3.4.3.3 'Join' Operation processing

3.4.3.4 'Modify' Operation Processing

3.4.3.5 'Delete' Operation Processing

3.4.3.6 'Add' Operation Processing

3.4.3.7 'Maximum' Operation Processing

3.4.3.8 'Minimum' Operation Processing

3.4.3.9 'Count' Operation Processing

3.4.3.10 'Average' Operation Processing

3.4.3.11 'Union' Operation Processing

232

3.4.3.12 'Destroy' Operation Processing

3.5 Build 'Query Processing Completed' Message

QP Structure Charts

(Charts begin on following page)

233

~V 0 E-
4..)2

P4 P
o r=

PL4P C.)IL
0 C

-7], cc
4--l~ a

E-4,

'4-)
4-) 4)P rL h

'-'

L ---- -

23~4

P..:;

cr 4>-- 4-) J

C.)E
0 '

al as2 4-

.4 .L 4 , l

Z ccE4 -

0 0

E- 4 - '4

~ ~ E-4

' 236

0 0 C-

o 4o'\c
o4-3
'J. 4 0)

r-i

02

0
G-4 E-4 4--) C

rxL cn4

*C M

C)U V)- 0- O

0) 0.'-
z-s-

0) P4-)cC
~.4 ceo *~

0)0

F: E-
0

0 T .;
0 ae

237C\

A o)

IL4 : V,
P.C) -4

P40

C.)~~0 4.) COv- H

0 10

02~ a0

4-~ -4

0C-J

0 C
t 0.

E-4

238

Vita

Captain Robert W. Fonden was born on November 16, 1952,

in Houston, Texas. In 1971, he graduated from Marion

Senior High School in Marion, Illinois. He attended

Moorhead State University, Moorhead, Minnesota from which

he received a Bachelor of Arts degree with a major in

Computer Science in 1975. He was subsequently commissioned

a 2nd Lieutenant in the United States Air Force Reserves.

On September 6, 1976 he was called to active duty. Between

September 1976 and May 1980, he was assigned to HQ MAC/AD

Data Automation at Scott AFB, Illinois, as a computer

systems analyst for the Consolidated Aerial Port System

(CAPS) development project. He entered the Air Force

Institute of Technology in June 1980.

Permanent Address: 195 Richmond Street

St. Paul, MN 56103,

239

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (W"en Date Entered)

REPORT DOCUMENTATION PAGE READ LNSTRUCTIONS
___BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT*S CATALOG NUMBER

.1 AFIT/nCS IEEI81T)-6

4. TITLE (and Subtitle), " S.TYPE OF REPORT & PERIOD COVEBED
DESIGN AND IMPLEMENTATION OF A BACKEND ""
MULTIPLE PROCESSOR RELATIONAL DATABASE MS Thesis
COMPUTER SYSTEM 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Robert W. Fonden
Capt USAF .-. : ..

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

-. AREA AWORK UNIT-NUMBERS
Air Force Institute of Technology (AFIT-EN)
Wright-Patterson AFB, Ohio 45433

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
DECEMBER 1981

13. NUMBER OF PAGES
250

14. MONITORING AGENCY NAME d ADDRESS(il different from Controlllnj Office) 15. SECURITY CLASS. (of this report)

UNCLASSIFIED

15e. DECLASSI FICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, It different from Report)

1.5 APR ' 82
IS. SUPPLEMENTARY NOTES Dean for Rc,->,"ch and
Approved-for public release; IAW./FR 190-17 Professional DOvelopment

FRC '-- , Air Force !nstitute of Technology (ATC)
FRE QC . Yt- . USAF Wright-Patterson AFB, OH 45433

1S. KEY WORDS (Continue on reveres side it necessary and identify by block number)

Relational Data Base Management System
Backend Computer
Data Base Computer
M1IMD Computer Architecture

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

A backend multinle-orocessor relational data base computer system was
designed with the goal of implementing a data base management system using
state-of-the-art technology. The objective was to overcome the traditional
limitations of data base management systems implemented on conventional
type computer architectures. H1opefully this would solve the ever-growing
Problem of information systems becoming obsolete in supporting the growing
information needs of the corporate industry.

DD I 'N 1473 EDITION OF I NOV 6s IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dae Entered)

-tNCLAS SIFIED
SECURITY CLASSIFICATION OF THIS PAGE(Rein Date Entered)

Toward this goal, investigations were made into studies in the literature
involving backend data base computer systems, the relational data model, and
data base computers usinp specialized architectures. The advantages and
disadvantages of these three areas were exnlored and then, after having
defined the longterm requirements and goals for the development of such a.....
system, the beneficial characteristics from each of these areas were merged.
together to Produce a system design. Central to this design is the use of.
a set of processors, managed by a backend controller processor, to take
full advantage of three levels of parallelism in processing relational
algebra query requests against relations.

fue to the comnlexity and size of this development effort, a top-down
structured detailed design and only a partial implementation of the
backend controller Processor was achieved in this research effort. A
detailed development plan has been defified, consisting of severai proje'ted
follow-on development efforts, to comnlete the entire developmentiof'thii '
data base computer system.

,! . "' ".';'** --

.-

-- _ -.. . ! " , . ".' , ,I.,

;~~~~~~~. ,*..... ,.. .,.. ," .

UNCLASSIFIED

SECuRITY CLASSIFICAT|O1 OF T1,1 PAGIEWhon Data Entered)

